Семинар «Технологии искусственного интеллекта применительно к оценке кредитоспособности заемщика».
В понедельник 8 ноября в рамках заседания научно-учебной лаборатории инвестиционного анализа ГУ-ВШЭ–Пермь проведён научный семинар на тему «Технологии искусственного интеллекта применительно к оценке кредитоспособности заемщика». Докладчик – младший научный сотрудник Агата Порошина.
На семинаре были представлены результаты исследования, проводившегося под руководством профессора Леонида Нахимовича Ясницкого. Материалы работы должны стать основой для диссертационного исследования в области оценки кредитоспособности с помощью инструментария нейросетевого моделирования. Целью работы является разработка методики, позволяющей классифицировать заемщиков, организованных в форме ИП. Для реализации цели исследования был применен метод нейросетевого математического моделирования. В качестве статистической базы использовалась информация из кредитных историй заемщиков, осуществлявших кредитование в период 2006 – 2010 гг., которая в дальнейшем была разбита на 3 множества: обучающее, тестирующее и подтверждающее.
В качестве ключевых параметров модели были выделены 4 группы входных факторов: показатели деятельности индивидуального предпринимателя, параметры кредитной сделки, индивидуальные показатели заемщика, макроэкономические показатели и выходной параметр, представляющий собой бинарную переменную, отражающую степень кредитного риска, связанного с заемщиком – «благонадежный» или «неблагонадежный». По результатам исследования была разработана нейросетевая математическая модель, характеризующаяся высокими прогностическими свойствами, и создан демонстрационный прототип системы.
В рамках семинара, особое внимание было уделено перспективам развития данной темы и возможностям внедрения технологий искусственного интеллекта в российскую банковскую практику, а также обозначены возможные направления дальнейших исследований, в частности сравнение результатов нейросетевого математического моделирования с эконометрическими подходами.
В ходе презентации слушателями были заданы вопросы относительно алгоритма формирования множеств из исходной базы данных и принципа включения факторов в модель. Было отмечено, что сегодня в практике не существует универсального алгоритма разбиения совокупности данных на множества, как правило, при реализации данного метода рекомендуемый объем тестирующего множества составляет 15% от обучающего. Отвечая на вопрос о критериях выбора факторов, которые необходимо включать в модель, было выявлено, что некоторые факторы не соответствует реалиям банковской практики при определении кредитоспособности заемщиков. Подобное обстоятельство служит стимулом для дальнейших исследований в данной области.