• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Keep Your Eyes On: A Prospective Device for Self-Monitoring Vision

Keep Your Eyes On: A Prospective Device for Self-Monitoring Vision

Unsplash

As part of the Strategic Project 'Success and Self-Sustainability of the Individual in a Changing World,' scientists at HSE University have conducted a study to develop an electronic device designed to reduce the risk of occurrence and progression of eye diseases.

In the digital age, the continuous use of gadgets and prolonged exposure to digital screens exacerbate health risks and are increasingly recognised as a public health problem. Statistics reveal that the number of hours spent in front of screens has increased dramatically over the past decade. Researchers worldwide attribute the increasing incidence of myopia in children and adolescents to this particular trend.

According to a survey conducted in Western Europe, only 50% of respondents regularly have their eyesight checked, while others tend to ignore early symptoms of visual impairment, which can eventually lead to serious vision problems, such as the progression of myopia in adolescents and hyperopia in adults. Using a personal device for self-monitoring vision can help prevent the progression of certain eye diseases: recent studies in Australia confirm that early detection of vision problems leads to better treatment outcomes and helps prevent the disease from worsening.

Pavel Korolev, in collaboration with a group of scientists, have begun developing a device for monitoring one's vision without the need to consult a healthcare provider. Their work is carried out in the framework of the Strategic Project 'Success and Self-Sustainability of the Individual in a Changing World.'

The researchers have published a report in which they analyse the structure of the human eye, vision parameters along with their normal values, monitoring methods, software and hardware for measuring eye parameters, as well as diseases, symptoms, and pathologies of the organ. As a result, the scientists have identified the primary requirements for a prospective device intended for independent vision monitoring.

The team working on the project is developing an electronic device capable of providing recommendations for eye rest and alerting the person to the need of consulting a healthcare provider if a visual impairment is detected. The goal is to help people mitigate the risks of developing eye diseases and prevent their progression. According to Pavel Korolev and the team, this can have a positive effect on overall human health by improving emotional well-being, interactions with the outside world and other people, safety at work and at home and productivity, and by slowing down the aging of the brain.

The scientists focus on the key parameters of human vision: intraocular pressure, field of vision, colour perception, visual acuity, visual evoked potentials, and eye refraction. Most existing devices for measuring these parameters are certified medical equipment, which is not always accessible for self-use and often necessitates professional assistance.

During the study, the scientists also determined that the critical flicker fusion frequency (cFFF) can be measured independently by an individual, while serving as an indicator of visual acuity. The cFFF refers to the frequency at which light flashes must occur for the human eye to perceive them as continuous light. This parameter can be used to assess the clarity and vividness with which a person perceives images in front of their eyes. Developing a self-monitoring device capable of measuring cFFF can mitigate the risk of undiagnosed glaucoma, cataracts, and other eye diseases.

Therefore, the development of a personal device for self-monitoring vision, aligning with the trend of digital medicine, can become a public health solution, offering potential benefits for promoting health and well-being in the digital age.

The prospective device will be particularly relevant for the at-risk group, including children, adolescents, and adults who spend prolonged periods working at a computer or handling small items. Furthermore, this technology can benefit individuals undergoing treatment or rehabilitation for optic nerve diseases, as it will help monitor the eye's ability to visualise and process information, enabling timely identification of complications or relapses. As an additional benefit, the device will not only assist patients but also alleviate the burden on healthcare providers.