We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Introduction to Python for Data Science

2023/2024
Academic Year
RUS
Instruction in Russian
3
ECTS credits
Delivered at:
Department of Humanities (Faculty of Computer Science, Economics, and Social Sciences)
Course type:
Compulsory course
When:
2 year, 1, 2 module

Instructor


Senina, Anna

Программа дисциплины

Аннотация

Данный курс представляет собой адаптацию общеуниверситетского курса по анализу данных на Python для студентов образовательной программы «История» и направлен на формирование компетенций в области понимания кода и написания собственных программ. В курсе будут рассмотрены темы, которые необходимы для успешного освоения базовых типов данных и синтаксических конструкций Python. Также будут рассматриваться более специализированные вопросы, связанные с профилем ОП «История», такие как использование Python для анализа исторических источников и литературы, сбор корпуса источников для исследования, применение алгоритмов для проектов на основе исторического нарратива — ботов, игр и др.
Цель освоения дисциплины

Цель освоения дисциплины

  • Научиться использовать пайтон для решения стандартных задач
  • Уметь анализировать табличные данные с помощью пайтон
Планируемые результаты обучения

Планируемые результаты обучения

  • Студент освоил базовый синтаксис Python и научился писать простые программы, использовать стандартные библиотеки для решения типовых задач
  • Студент умеет читать и записывать файлы, анализировать информацию в текстовой и табличной форме с помощью Python
  • Знать основы статистики, уметь выбирать инструменты для исторических исследований и интерпретировать полученные результаты
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Базовые элементы синтаксиса Python. Основные типы данных
  • Работа с файлами
  • Базовая статистика в гуманитарных исследованиях
Элементы контроля

Элементы контроля

  • неблокирующий Контрольная работа по программированию
  • неблокирующий Проектное предложение
  • неблокирующий Контрольная работа по анализу данных
  • неблокирующий Проектное предложение
  • неблокирующий Учебный хакатон
  • неблокирующий Самостоятельная работа с онлайн-курсом
    Дисциплина реализуется в дистанционном формате, студент самостоятельно решает задания и оправляет преподавателю в SmartLMS скриншот выполненных заданий
  • неблокирующий Учебный хакатон
  • неблокирующий Самостоятельная работа с онлайн-курсом
    Дисциплина реализуется в дистанционном формате, студент самостоятельно решает задания и оправляет преподавателю в SmartLMS скриншот выполненных заданий
  • неблокирующий Домашнее задание
    Домашнее задание по анализу данных (мини-проект)
  • неблокирующий Мини-тесты
    Мини-тесты по пройденным темам
Промежуточная аттестация

Промежуточная аттестация

  • 2023/2024 учебный год 1 модуль
    0.5 * Контрольная работа по программированию + 0.2 * Мини-тесты + 0.3 * Учебный хакатон
  • 2023/2024 учебный год 2 модуль
    0.3 * Домашнее задание + 0.5 * Контрольная работа по анализу данных + 0.2 * Мини-тесты
Список литературы

Список литературы

Рекомендуемая основная литература

  • Data Science : наука о данных с нуля, Грас, Дж., 2018
  • Златопольский, Д. М. Основы программирования на языке Python / Д. М. Златопольский. — 2-ое изд., испр. и доп. — Москва : ДМК Пресс, 2018. — 396 с. — ISBN 978-5-97060-641-4. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/131683 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Маккинни, У. Python и анализ данных / У. Маккинни , перевод с английского А. А. Слинкина. — 2-ое изд., испр. и доп. — Москва : ДМК Пресс, 2020. — 540 с. — ISBN 978-5-97060-590-5. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/131721 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Миркин, Б. Г.  Введение в анализ данных : учебник и практикум / Б. Г. Миркин. — Москва : Издательство Юрайт, 2020. — 174 с. — (Высшее образование). — ISBN 978-5-9916-5009-0. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/450262 (дата обращения: 27.08.2024).
  • Северенс, Ч. Введение в программирование на Python : учебное пособие / Ч. Северенс. — 2-е изд. — Москва : ИНТУИТ, 2016. — 231 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/100703 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.

Рекомендуемая дополнительная литература

  • Бизли, Д. Python. Книга рецептов / Д. Бизли, Б. К. Джонс , перевод с английского Б. В. Уварова. — Москва : ДМК Пресс, 2019. — 646 с. — ISBN 978-5-97060-751-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/131723 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Бонцанини, М. Анализ социальных медиа на Python. Извлекайте и анализируйте данные из всех уголков социальной паутины на Python / М. Бонцанини , перевод с английского А. В. Логунова. — Москва : ДМК Пресс, 2018. — 288 с. — ISBN 978-5-97060-574-5. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/108129 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Митчелл, Р. Скрапинг веб-сайтов с помощю Python : руководство / Р. Митчелл , перевод с английского А. В. Груздев. — Москва : ДМК Пресс, 2016. — 280 с. — ISBN 978-5-97060-223-2. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/100903 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Основы Data Science и Big Data. Python и наука о данных - 978-5-496-02517-1 - Дэви С., Арно М., Мохамед А. - 2017 - Санкт-Петербург: Питер - https://ibooks.ru/bookshelf/354390 - 354390 - iBOOKS
  • Практическая статистика для специалистов Data Science : 50 важнейших понятий: пер. с англ., Брюс, П., 2018

Авторы

  • Сенина Анна Васильевна