We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Machine Learning

2024/2025
Academic Year
RUS
Instruction in Russian
6
ECTS credits
Delivered at:
Department of Information Technologies in Business (Faculty of Computer Science, Economics, and Social Sciences)
Course type:
Compulsory course
When:
1 year, 2, 3 module

Instructors


Garafutdinov, Robert V.

Программа дисциплины

Аннотация

Машинное обучение – это область знаний, позволяющая автоматически находить зависимости в данных. Такая технология позволяет решать различные задачи без явного программирования правил. Благодаря развитию вычислительной техники и самой области, в последнее десятилетие машинное обучение стало неотъемлемой частью самых разных продуктов – от веб-сервисов до банков. В рамках данного курса студенты рассмотрят основные концепции машинного обучения и попрактикуются в применении методов машинного обучения для решения бизнес-задач.
Цель освоения дисциплины

Цель освоения дисциплины

  • Развитие у студентов навыков применения методов и решения задач искусственного интеллекта и машинного обучения с использованием современных подходов, технологий и инструментальных средств (на примере языка программирования Python и его библиотек).
Планируемые результаты обучения

Планируемые результаты обучения

  • имеет представление об искусственном интеллекте и его применимости для решения задач бизнеса;
  • владеет языком Python и библиотекой pandas;
  • способен выполнять загрузку и обработку табличных данных с помощью этих инструментов;
  • знает основные понятия и постановки задач машинного обучения;
  • знает алгоритмы и методы классических задач машинного обучения;
  • знает основные метрики качества регрессии, классификации и кластеризации;
  • способен строить модели регрессии, классификации и кластеризации;
  • способен оценивать качество моделей на практике в Python;
  • знает принципы построения композиций моделей;
  • знает алгоритмы ансамблирования;
  • умеет применять подходы к решению проблем машинного обучения на практике в Python;
  • имеет представление об искусственных нейронных сетях как базовых алгоритмах глубокого обучения;
  • способен строить простые нейронные сети на практике в Python.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Тема 1. Введение в искусственный интеллект
  • Тема 2. Инструментальные средства
  • Тема 3. Подготовка и визуализация данных
  • Тема 4. Классические задачи машинного обучения: регрессия, классификация, кластеризация
  • Тема 5. Ансамбли алгоритмов
  • Тема 6. Проблемы качества обучения
  • Тема 7. Отбор и синтез признаков и объектов
  • Тема 8. Введение в нейронные сети
Элементы контроля

Элементы контроля

  • неблокирующий Домашняя работа
  • неблокирующий Контрольная работа 2
  • неблокирующий Контрольная работа 1
  • неблокирующий Экзамен
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 3rd module
    0.2 * Домашняя работа + 0.2 * Контрольная работа 1 + 0.2 * Контрольная работа 2 + 0.4 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Барский, А. Б. Введение в нейронные сети : учебное пособие / А. Б. Барский. — 2-е изд. — Москва : ИНТУИТ, 2016. — 358 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/100684 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Данилов, В. В. Нейронные сети : учебное пособие / В. В. Данилов. — Донецк : ДонНУ, 2020. — 158 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/179953 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Искусственные нейронные сети : учебник / В. В. Цехановский, Е. Ю. Бутырский, Н. А. Жукова [и др.] ; под ред. В. В. Цехановского. — Москва : КноРус, 2023. — 350 с. — ISBN 978-5-406-10678-5. — URL: https://book.ru/book/947113 (дата обращения: 27.08.2024). — Текст : электронный.
  • Машинное обучение. Паттерны проектирования: Пер. с англ. / В. Лакшманан, С. Робинсон, М. Мунн. - 978-5-9775-6797-8 - Лакшманан В. - 2022 - Санкт-Петербург: БХВ-Петербург - https://ibooks.ru/bookshelf/385740 - 385740 - iBOOKS
  • Платонов, А. В.  Машинное обучение : учебное пособие для вузов / А. В. Платонов. — Москва : Издательство Юрайт, 2023. — 85 с. — (Высшее образование). — ISBN 978-5-534-15561-7. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/520544 (дата обращения: 27.08.2024).

Рекомендуемая дополнительная литература

  • Caselles-Dupré, H., Lesaint, F., & Royo-Letelier, J. (2018). Word2Vec applied to Recommendation: Hyperparameters Matter. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsarx&AN=edsarx.1804.04212
  • D. Sculley, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, & Michael Young. (n.d.). Machine Learning: The High-Interest Credit Card of Technical Debt. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.BAEF1F2C

Авторы

  • Карпович Марина Валерьевна
  • Гарафутдинов Роберт Викторович