We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Machine Learning

2022/2023
Academic Year
RUS
Instruction in Russian
3
ECTS credits
Delivered at:
Department of Information Technologies in Business (Faculty of Computer Science, Economics, and Social Sciences)
Course type:
Compulsory course
When:
1 year, 3 module

Instructor


Перескокова Ольга Ивановна

Программа дисциплины

Аннотация

Настоящая программа учебной дисциплины устанавливает требования к образовательным результатам и результатам обучения студента и определяет содержание и виды учебных занятий и отчетности. Программа предназначена для преподавателей, ведущих дисциплину «Машинное обучение», учебных ассистентов и студентов направления подготовки 38.04.05 Бизнес-информатика, обучающихся по образовательной программе «Бизнес-аналитика», 09.03.04 Программная инженерия, обучающихся по образовательной программе "Программная инженерия".
Цель освоения дисциплины

Цель освоения дисциплины

  • закрепление навыков работы на языке Python, знание и понимание задач управления данными, в том числе, загрузка данных, преобразование данных, и предварительный анализ и визуализация данных
  • знакомство с основными задачами и моделями машинного обучения, знание методов оценки качества работы различных моделей машинного обучения
  • понимание процесса интеграции моделей машинного обучения в рамках задач стоящих перед потенциальными заказчиками
Планируемые результаты обучения

Планируемые результаты обучения

  • Владеть навыками анализа реальных данных с помощью изученных методов
  • Знать основные модели и методы машинного обучения и разработки данных
  • Уметь применять указанные модели и методы, а также программные средства, в которых они реализованы
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Раздел 1. Задача классификации и регрессии
  • Раздел 2. Задача оценки эффекта от воздействия
  • Раздел 3. Задача построения рекомендательных систем
  • Раздел 4. Задачи обучения без учителя
  • Раздел 5. Модели глубинного обучения
  • Раздел. 6. Работа над проектом
Элементы контроля

Элементы контроля

  • неблокирующий Самостоятельная работа
  • неблокирующий Проект
  • неблокирующий Онлайн-курс
  • неблокирующий Экзамен
Промежуточная аттестация

Промежуточная аттестация

  • 2022/2023 учебный год 3 модуль
    0.3 * Проект + 0.3 * Онлайн-курс + 0.1 * Самостоятельная работа + 0.3 * Экзамен

Авторы

  • Перескокова Ольга Ивановна
  • Карпович Марина Валерьевна