We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Data Analysis in Python

2022/2023
Academic Year
RUS
Instruction in Russian
12
ECTS credits
Delivered at:
Department of Humanities (Faculty of Computer Science, Economics, and Social Sciences)
Course type:
Compulsory course
When:
1 year, 1-4 module

Instructor


Senina, Anna

Программа дисциплины

Аннотация

Дисциплина представляет собой вводный курс в Data Science на Python. В курсе рассматриваются основы синтаксиса Python, написание простых программ, работа с файлами, веб-скрейпинг. В ходе освоения курса студенты используют стандартные библиотеки Python, а также библиотеки для анализа данных, и учатся решать задачи гуманитарных дисциплин с помощью программирования. В рамках курса студенты учатся писать программы для решения поставленной преподавателем задачи и собственных исследовательских задач, читать и интерпретировать коды других исследователей. Курс включает в себя изучение необходимых для дальнейшей работы основ математики, прежде всего математической статистики, овладение необходимым инструментарием SPSS и Python; основных задач анализа данных и машинного обучения (регрессия, классификация, кластеризация), методы анализа текстовых данных.
Цель освоения дисциплины

Цель освоения дисциплины

  • Получить базовые знания, умения и навыки в области Data Science с помощью программирования на Python
Планируемые результаты обучения

Планируемые результаты обучения

  • Уметь использовать программирование для решения простых стандартных задач
  • Освоить базовый синтаксис Python, основные типы данных и операции с ними
  • Знать основы веб-скрейпинга, уметь работать с файлами
  • Студент умеет искать, обрабатывать и очищать данные
  • Студент освоил базовые измерения данных, умеет проводить статистический анализ
  • Студент умеет работать в различных средах для реализации статистического исследования: Excel, SPSS, Python
  • Студент умеет качественно визуализировать данные для проведения исследований
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Базовый Python для анализа данных
  • Статистика в социальных и гуманитарных науках
  • Визуализация данных
Элементы контроля

Элементы контроля

  • неблокирующий Решение заданий онлайн-курса
    Курс "Python для извлечения и обработки данных" https://openedu.ru/course/hse/PYTHON. Освоение онлайн-курса подтверждается скриншотом, который загружается в SmartLMS
  • неблокирующий Учебный хакатон
    В ходе хакатона необходимо выбрать кейс, решить его с помощью программирования и подготовить презентацию
  • неблокирующий Проект на Python
  • неблокирующий Экзамен по программированию
Промежуточная аттестация

Промежуточная аттестация

  • 2022/2023 учебный год 2 модуль
    0.4 * Учебный хакатон + 0.6 * Решение заданий онлайн-курса
  • 2022/2023 учебный год 4 модуль
    0.3 * Экзамен по программированию + 0.5 * 2022/2023 учебный год 2 модуль + 0.2 * Проект на Python
Список литературы

Список литературы

Рекомендуемая основная литература

  • Bill Lubanovic. (2019). Introducing Python : Modern Computing in Simple Packages. [N.p.]: O’Reilly Media. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=2291494
  • Döbler, M., & Grössmann, T. (2019). Data Visualization with Python : Create an Impact with Meaningful Data Insights Using Interactive and Engaging Visuals. Packt Publishing.
  • Grant, R. (2019). Data Visualization : Charts, Maps, and Interactive Graphics. Boca Raton, Florida: Chapman and Hall/CRC. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1944722
  • Knaflic, C. N. (2015). Storytelling with Data : A Data Visualization Guide for Business Professionals. Hoboken, New Jersey: Wiley. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1079665
  • Krum, R. (2014). Cool Infographics : Effective Communication with Data Visualization and Design. Indianapolis, Indiana: Wiley. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=654832
  • Müller, A. C., & Guido, S. (2017). Introduction to Machine Learning with Python : A Guide for Data Scientists: Vol. First edition. Reilly - O’Reilly Media.
  • Nelli, F. (2018). Python Data Analytics : With Pandas, NumPy, and Matplotlib (Vol. Second edition). New York, NY: Apress. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1905344
  • O. Chudinovskikh S., & О. Чудиновских С. (2018). Big Data and Statistics on Migration ; Большие Данные И Статистика Миграции. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.25D0F992
  • Python и анализ данных, Маккинли, У., 2015
  • Rossant, C. (2015). Learning IPython for Interactive Computing and Data Visualization - Second Edition (Vol. Second edition). Birmingham, UK: Packt Publishing. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1084592
  • Taieb, D. (2018). Data Analysis with Python : A Modern Approach. Birmingham, UK: Packt Publishing. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1993344
  • Vanderplas, J. T. (2016). Python Data Science Handbook : Essential Tools for Working with Data (Vol. First edition). Sebastopol, CA: Reilly - O’Reilly Media. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=nlebk&AN=1425081
  • Walny, J., Frisson, C., West, M., Kosminsky, D., Knudsen, S., Carpendale, S., & Willett, W. (2019). Data Changes Everything: Challenges and Opportunities in Data Visualization Design Handoff.
  • Автоматизация рутинных задач с помощью Python : практическое руководство для начинающих, Свейгарт, Э., 2018
  • Архангельская, Л. Ю., Политическая статистика : учебник / Л. Ю. Архангельская, В. Н. Салин. — Москва : КноРус, 2021. — 415 с. — ISBN 978-5-406-07892-1. — URL: https://book.ru/book/938426 (дата обращения: 25.08.2023). — Текст : электронный.
  • Бизли, Д. Python. Книга рецептов / Д. Бизли, Б. К. Джонс , перевод с английского Б. В. Уварова. — Москва : ДМК Пресс, 2019. — 646 с. — ISBN 978-5-97060-751-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/131723 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Брюс П. - Практическая статистика для специалистов Data Science: Пер. с англ. - 978-5-9775-3974-6 - Санкт-Петербург: БХВ-Петербург - 2018 - 358886 - https://ibooks.ru/bookshelf/358886/reading - iBOOKS
  • Дэви С., Арно М., Мохамед А. - Основы Data Science и Big Data. Python и наука о данных - 978-5-496-02517-1 - Санкт-Петербург: Питер - 2017 - 354390 - https://ibooks.ru/bookshelf/354390/reading - iBOOKS
  • Изучаем программирование на Python, Бэрри, П., 2017
  • Кремер, Н. Ш.  Математическая статистика : учебник и практикум для вузов / Н. Ш. Кремер. — Москва : Издательство Юрайт, 2020. — 259 с. — (Высшее образование). — ISBN 978-5-534-01654-3. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/451060 (дата обращения: 28.08.2023).
  • Маккинни, У. Python и анализ данных / У. Маккинни , перевод с английского А. А. Слинкина. — 2-ое изд., испр. и доп. — Москва : ДМК Пресс, 2020. — 540 с. — ISBN 978-5-97060-590-5. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/131721 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Математическая статистика с элементами теории вероятностей в задачах с решениями : учеб. пособие для вузов, Ниворожкина, Л. И., 2018
  • Международная статистика : учебник для бакалавриата и магистратуры, Башкатов, Б.И., 2019
  • Митчелл, Р. Скрапинг веб-сайтов с помощю Python : руководство / Р. Митчелл , перевод с английского А. В. Груздев. — Москва : ДМК Пресс, 2016. — 280 с. — ISBN 978-5-97060-223-2. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/100903 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Основы Data Science и Big Data. Python и наука о данных : пер. с англ., Силен, Д., Мейсман, А., 2018
  • Отв. ред. Шаныгин С.И. - Социально-экономическая статистика: примеры, задачи, тесты. Учебное пособие - 978-5-392-31500-0 - Проспект - 2021 - http://ebs.prospekt.org/book/43107 - 43107 - PROSPECT
  • Представление и визуализация результатов научных исследований : учебник / О.С. Логунова, П.Ю. Романов, Л.Г. Егорова, Е.А. Ильина ; под ред. О.С. Логуновой. — Москва : ИНФРА-М, 2020. — 156 с. + Доп. материалы [Электронный ресурс]. — (Высшее образование: Аспирантура). — DOI 10.12737/textbook_5c178eb6cf1e63.57981471. - Текст : электронный. - URL: http://znanium.com/catalog/product/1056236
  • Салин, В. Н., Наука о данных и статистика в образовании будущего : научное издание / В. Н. Салин. — Москва : Русайнс, 2021. — 300 с. — ISBN 978-5-4365-8765-3. — URL: https://book.ru/book/942063 (дата обращения: 25.08.2023). — Текст : электронный.
  • Статистика и котики, Савельев, В. В., 2018
  • Субботина, А., & Гржибовский, А. (2014). Описательная Статистика И Проверка Нормальности Распределения Количественных Данных. ЭКОЛОГИЯ ЧЕЛОВЕКА, 2.
  • Тахакаси, С. Занимательная статистика. Манга : учебник / С. Тахакаси. — Москва : ДМК Пресс, 2010. — 224 с. — ISBN 978-5-94120-244-7. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/61019 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Чернышев, С. А.  Основы программирования на Python : учебное пособие для вузов / С. А. Чернышев. — Москва : Издательство Юрайт, 2021. — 286 с. — (Высшее образование). — ISBN 978-5-534-14350-8. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/477353 (дата обращения: 28.08.2023).

Рекомендуемая дополнительная литература

  • Изучаем Python : программирование игр, визуализация данных, веб - приложения, Мэтиз, Э., 2017

Авторы

  • Сенина Анна Васильевна