• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Marketing communications analytics

2024/2025
Academic Year
RUS
Instruction in Russian
6
ECTS credits
Delivered at:
Department of Foreign Languages (Faculty of Management)
Course type:
Compulsory course
When:
2 year, 1, 2 module

Instructor

Программа дисциплины

Аннотация

Дисциплина «Аналитика маркетинговых коммуникаций» формирует у студентов представление о роли данных в системе маркетинговых коммуникаций бизнеса, а также навыки анализа медиапространства для управления бренд-стратегией. В рамках курса, помимо знакомства с сервисами ORM, студенты изучают основы программирования на языке Python, учатся самостоятельно собирать датасеты из открытых источников, анализировать и интерпретировать полученные данные, строить гипотезы и интегрировать их в маркетинговую стратегию.
Цель освоения дисциплины

Цель освоения дисциплины

  • Формирование у студентов комплексных компетенций по анализу маркетинговых коммуникаций (с фокусировкой на бренд-коммуникациях) с помощью языка Python и принятия маркетинговых решений на основе полученных данных.
Планируемые результаты обучения

Планируемые результаты обучения

  • Студент самостоятельно планирует маркетинговое исследование
  • Студент осваивает базовые навыки языка программирования Python и библиотек Numpy, Pandas, Matplotlib, Seaborn, Beautifulsoup, Spacy, Dostoevsky
  • Студент самостоятельного использует программный интерфейс социальной сети VK (VK API)
  • Студент применяет навыки сбора данных из социальных сетей с использованием коммерческих парсеров и VK API
  • Студент готов проводить анализ тональности сообщений
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Данные в маркетинговых коммуникациях
  • Основы Python
  • Сбор и обработка данных из Интернета
  • Анализ и интерпретация данных
Элементы контроля

Элементы контроля

  • неблокирующий Оценка за семинары
  • неблокирующий Оценка за составление датасета
  • неблокирующий Оценка за анализ датасета
  • неблокирующий Защита итогового проекта
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 2nd module
    0.4 * Защита итогового проекта + 0.15 * Оценка за анализ датасета + 0.3 * Оценка за семинары + 0.15 * Оценка за составление датасета
Список литературы

Список литературы

Рекомендуемая основная литература

  • Alpina - 20004 - Б.Тирни; Д.Келлехер - Наука о данных: Базовый курс - 9785961433784 - Альпина Паблишер - 2020 - https://hse.alpinadigital.ru/book/20004

Рекомендуемая дополнительная литература

  • Schneider, D. I. (2016). An Introduction to Programming Using Python, Global Edition: Vol. Global edition. Pearson.

Авторы

  • Зарипова Юлия Олеговна
  • Маткин Никита Андреевич