We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Data Analysis in Python

2023/2024
Academic Year
RUS
Instruction in Russian
3
ECTS credits
Course type:
Compulsory course
When:
3 year, 1 module

Instructor

Программа дисциплины

Аннотация

Данный курс направлен на формирование компетенций у студентов в области статистики и анализа данных. В курсе будут рассмотрены темы, которые необходимы для успешного освоения основных понятий и методов, связанных с анализом данных. Дисциплина реализуется с помощью онлайн-курса «Учебник по Анализу данных (Начальный)» в SmartLMS (https://edu.hse.ru/course/view.php?id=136231).
Цель освоения дисциплины

Цель освоения дисциплины

  • Целью освоения дисциплины «Анализ данных» является овладение студентами основами статистики и анализа данных для применения в решении различных практических задач.
Планируемые результаты обучения

Планируемые результаты обучения

  • Понимать и корректно использовать основные статистические понятия
  • Фильтровать данные по нескольким условиям
  • Создавать сводные таблицы
  • Вычислять коэффициент корреляции Пирсона и интерпретировать полученные результаты
  • Вычислять релевантные описательные статистики и интерпретировать полученные результаты
  • Визуализировать данные с помощью простейших видов диаграмм: линейной, точечной, столбчатой
  • Сортировать данные
  • Переводить значения признака в z-оценки
  • Обрабатывать пропущенные значения и выбросы
  • Корректно открывать табличные данные различных форматов
  • Использовать собственноручно написанные функции для обработки данных, создания новых переменных
  • Использовать Python в применении к анализу данных
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Python для анализа данных, алгоритмы
  • Библиотеки для работы с данными в Python
  • Визуализация данных
  • Машинное обучение
  • Текстовый анализ
Элементы контроля

Элементы контроля

  • неблокирующий КР в формате НЭ
    формат сдачи контрольного мероприятия зависит от формата проведения занятий (для онлайн-занятий – возможно использование прокторинга)
  • неблокирующий мини-тесты
    формат сдачи контрольного мероприятия зависит от формата проведения занятий (для онлайн-занятий – возможно использование прокторинга)
  • неблокирующий Проект
    формат сдачи контрольного мероприятия зависит от формата проведения занятий (для онлайн-занятий – возможно использование прокторинга)
Промежуточная аттестация

Промежуточная аттестация

  • 2023/2024 учебный год 1 модуль
    min(0.3 * мини-тесты в начале лекций + 0.4 * КР в формате НЭ + 0.3 * Проект, 8) В соответствии с п. 69 “Положения об организации промежуточной аттестации и текущего контроля успеваемости студентов” (ПОПАТКУСа) итоговая оценка студента за дисциплину-пререквизит (ДПР) к НЭ по АД не может быть больше 8 баллов. 9 или 10 за ДПР можно получить, сдав НЭ на 9 или 10 (см. раздел «Перезачет оценок» https://www.hse.ru/studyspravka/examsdataculture)

Авторы

  • Королева Анастасия Романовна