Strategic Ambiguity in Games

Jürgen Eichberger

22 March 2021

Высшая школа экономики

Национальный исследовательский университет

Outline: Part I

Decision Making under Uncertainty

- 1. Introduction
- 2. Risk: Expected Utility
- 3. Objects of choice
 - 3.1 Choice of lotteries: objective probabilities
 - 3.2 Choice of acts: subjective probabilities
 - 3.3 Experimental evidence
- 4. Ambiguity: CEU & MEU
 - 4.1 Choquet Expected Utility (CEU)
 - 4.2 Minimum Expected Utility (MEU)
 - 4.3 CEU and MEU
- 5. Ambiguity attitudes
 - 5.1 Optimism and pessimism: lpha-MEU
 - 5.2 Smooth model
 - 5.3 Prospect Theory

Outline: Part II Games and Context

6. Strategic interaction

- 6.1 Actions and beliefs
- 6.2 Optimism and pessimism: Jaffray capacities
- 6.3 Contex information: belief functions

7. Equilibrium concept

- 7.1 Consistency: EUA
- 7.2 Supports
- 7.3 Context: belief functions

8 Existence

- 8.1 Exogenous context information
- 8.2 Endogenous consistency-related information
- 8.3 Optimism and pessimissm

9. Examples

- 9.1 Minimum effort games
- 9.2 Nash bargaining games

Literature: Part I

Decision making under Ambiguity

1. Books and surveys

Gilboa, I. (2009). Decision Theory.

Kreps, D. (1988). Notes on the Theory of Choice.

Wakker, P. (2010). Prospect Theory for Risk and Ambiguity.

Machina, M. & Siniscalchi, M. (2013). Ambiguity and Ambiguity

Aversion. [Handbook: Risk and Uncertainty]

2. Important articles

CEU: Schmeidler, D. (1989).

MEU: Gilboa, I. & Schmeidler, D. (1989).

Recursive model: Segal, U, (1990).

Smooth model: Klibanoff, P., Marinacci, M. & Mukerji, S. (2005).

 α -MEU: Ghirardato, P., Marinacci, M. (2002).

Literature: Part l

Decision making under Ambiguity

3. Related approaches

Vector Expected Utility: Siniscalchi, M. (2009).

Variational Preferences: Maccheroni, F., Marinacci, M., Rusticchini, A. (2006).

CEU with neo-additive capacities: Chateauneuf, A., Eichberger, J., Grant, S. (2007).

Confidence functions: Chateauneuf, A., Faro, J.H. (2009).

4. Alternative approaches

Incomplete preferences: Bewley (2002).

Partial information and belief functions: Jaffray (1989).

Decisions under risk and uncertainty

- Objects of the decision are
 - probability distributions over outcomes (lotteries), or
 - state-contingent outcomes.
- Preferences order
 - a set of lotteries or
 - ▶ a set of state-contingent outcomes (acts, actions).

It is usual to distinguish

- decisions under risk:
 - probabilities of outcomes are part of the information of the decision maker, i.e.
 - objects of the decision are lotteries,
- decisions under uncertainty:
 - probabilities of outcomes are not part of the information of the decision maker, i.e.
 - objects of the decision are state-contingent outcomes.

Decisions under uncertainty

- von Neumann & Morgenstern
 - Expected Utility (EU)
 - choice of *lotteries*
- Savage
 - ► Subjective Expected Utility (SEU)
 - choice of actions,i.e. state-contingent outcomes
- ► Anscombe & Aumann
 - ▶ both *subjective* and *objective probabilities*,
 - choice of actions with lotteries as outcomes, i.e., state-contingent lotteries.

Lotteries: von Neumann-Morgenstern approach

► Consider a *finite* set of outcomes:

$$X := \{x_1, ..., x_n\}.$$

ightharpoonup The set of probabilities over the outcomes in X is

$$\Delta^n := \{(p_1,...,p_n) \in \mathbb{R}^n_+ | \sum_{i=1}^n p_i = 1\} \subset \mathbb{R}^n.$$

▶ One assumes that there is a *preference order*

$$\succ$$
 on Δ^n .

Lotteries: von Neumann-Morgenstern approach General preference representation

Proposition 1.1 (Debreu, 1952)

The following statements are equivalent:

(i) The preference order \succeq on $\Delta^n \subset \mathbb{R}^n$ satisfies Axioms

A1: Completeness,

A2: Transitivity, and

A3: Continuity.

(ii) There exists a function $V:\Delta^n\to\mathbb{R}$ such that for all $p,q\in\Delta^n,$

$$p \succeq q \Leftrightarrow V(p) \geq V(q)$$
.

Remark 11

The general representation over lotteries does not distinguish probabilities and outcomes.

Lotteries: von Neumann-Morgenstern approach Expected utility preferences

Expected Utility

$$V(p) = \sum_{i=1}^{n} p_i \cdot u(x_i)$$

Properties of EU-preferences

ightharpoonup von Neumann-Morgenstern utilities are unique up to a linear affine transformation: for b > 0,

$$v(x) = a + b \cdot u(x)$$
.

v and u represent the same preferences over Δ^3 .

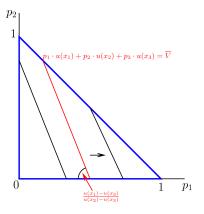
Hence, one can normalise two values of the von Neumann-Morgenstern utility function: for $u(x^*) > u(x_*)$, define $v(x) := \frac{u(x) - u(x_*)}{u(x^*) - u(x_*)}$, then

$$v(x^*) = 1$$
 and $v(x_*) = 0$.

Lotteries: von Neumann-Morgenstern approach

Example 1.1

Indifference curves are linear and parallel



$$p_2 = \frac{V - u(x_3)}{u(x_2) - u(x_3)} - \frac{u(x_1) - u(x_3)}{u(x_2) - u(x_3)} \cdot p_1.$$

Risk attitudes

$$L = \langle x_1, x_2; \pi, 1 - \pi \rangle$$

- A risk-averse decision maker will
 - ▶ pay a *positive risk premium P_L* and
 - ► has a certainty equivalent Q_L which is lower than the expected value of the lottery L,

$$P_L > 0 \iff Q_L < \sum_{i=1}^n p_i x_i.$$

Risk attitudes

Risk attitudes and the von Neumann-Morgenstern utility function

Risk attitudes can be characterised by the curvature of the von Neumann-Morgenstern utility function $u(\cdot)$:

risk attitude	curvature of $u(\cdot)$	risk premium
risk averse	concave	positive
risk neutral	linear	null
risk loving	convex	negative

risk averse	$u(\sum_{i=1}^n p_i x_i) > \sum_{i=1}^n p_i u(x_i))$
risk neutral	$u(\sum_{i=1}^n p_i x_i) = \sum_{i=1}^n p_i u(x_i)$
risk loving	$u(\sum_{i=1}^n p_i x_i) < \sum_{i=1}^n p_i u(x_i))$

Lotteries: von Neumann-Morgenstern approach Expected utility

One seeks axioms (assumptions) which guarantee the existence of an expected utility representation:

$$V(p) := \sum_{i=1}^{n} p_i \cdot u(x_i).$$

Axiom A4: Independence

For all $p, q, r \in \Delta^n$ and all $\alpha \in [0, 1]$,

$$\alpha \cdot p + (1 - \alpha) \cdot r \succeq \alpha \cdot q + (1 - \alpha) \cdot r \Leftrightarrow p \succeq q.$$

Lotteries: von Neumann-Morgenstern approach Expected utility

Proposition 1.2

The following statements are equivalent:

- (i) The preference order \succeq on $\Delta^n \subset \mathbb{R}^n$ satisfies Axioms A1, A2, A3, and A4.
- (ii) There exists a function $u: X \to \mathbb{R}$ such that for all $p, q \in \Delta^n$,

$$p \succeq q \quad \Leftrightarrow \quad \sum_{i=1}^n p_i \cdot u(x_i) \geq \sum_{i=1}^n q_i \cdot u(x_i).$$

General lotteries for arbitrary sets of outcomes X

Probability measures

Consider

- a set X and
- \blacktriangleright an algebra of *events*, i.e., an algebra of subsets of X, \mathcal{X} .

A probability measure is a function

$$P: \mathcal{X} \rightarrow [0,1]$$

with the following properties

- (a) $P(E) \ge 0$ for all $E \in \mathcal{X}$,
- (b) P(X) = 1,
- (c) $P(E \cup F) = P(E) + P(F)$ for all $E, F \in \mathcal{X}$ such that $E \cap F = \emptyset$.

Lotteries with arbitrary sets of outcomes X

A special case: general lotteries (simple probability measures)

A (general) lottery is a probability measure with finite support:

- P(E) = 1 for a finite set or, equivalently,
- ▶ supp $P := \{x \in X | P(x) > 0\}$ is a *finite set* .

Denote by \mathcal{P}_S the set of *general lotteries* (simple probability measures) on X.

An alternative continuity axiom.

Axiom A3*: Archimedean axiom

For all $P,Q,R\in\mathcal{P}$ with $P\succ Q\succ R$ there exist numbers $\alpha,\beta\in(0,1)$ such that

$$\alpha \cdot P + (1 - \alpha) \cdot R \succeq Q \succeq \beta \cdot P + (1 - \beta) \cdot R$$
.

Expected utility for general lotteries

Proposition 1.3

The following statements are equivalent:

- (i) The preference order \succeq on \mathcal{P}_s satisfies
- Axioms A1, A2, A3*, and A4.
- (ii) There exists a function $u:X \to \mathbb{R}$ such that, for all $P,Q \in \mathcal{P}_s,$

$$P \succsim Q \Leftrightarrow \sum_{x} P(x) \cdot u(x) \geq \sum_{x} Q(x) \cdot u(x).$$

Lotteries with arbitrary sets of outcomes X

Extensions and remarks

► It is possible to derive the expected utility representation also for preferences \(\subseteq \text{on a set of general probability measures } \mathcal{P}

$$P \succsim Q \Leftrightarrow \int u(x) dP \ge \int u(x) dQ.$$

by adding a further axiom (monotony).

► The von Neumann-Morgenstern utility function

$$u: X \to \mathbb{R}$$

must be bounded, i.e., there must exist a number K such that for all $x \in X$,

$$-K \le u(x) \le K$$
.

This condition is always satisfied if X is a *finite* or a *compact* set.

Choice over acts

State-contingent outcomes (acts)

- ightharpoonup states of the world: $s \in S$,
- ightharpoonup consequences: $x \in X$,
- ▶ acts: $f \in \mathcal{F} = \{g | g : S \rightarrow X\}$.

Events are subsets of the state space: $E \subset S$.

Example 2.1

$$S = \{s_1, s_2\}, \qquad X = \{A, B, C\},$$

$$\begin{vmatrix} f_1 & f_2 & f_3 & f_4 & f_5 & f_6 & f_7 & f_8 & f_9 \\ \hline s_1 & A & A & A & B & B & B & C & C & C \\ s_2 & A & B & C & A & B & C & A & B & C \end{vmatrix}$$

Choice over acts

Example 2.2 (a special case of acts: bets)

Consider an urn with black and white balls. A ball will be drawn randomly.

- Bet on white: $\begin{cases} 1 & \text{if a white ball is drawn,} \\ 0 & \text{if a black ball is drawn.} \end{cases}$
- $\bullet \quad \text{Bet on black:} \qquad \left\{ \begin{array}{ll} 1 & \text{if a black ball is drawn,} \\ \\ 0 & \text{if a white ball is drawn.} \end{array} \right.$
- states of the world: $s \in S := \{black, white\},\$
- consequences: $x \in X := \{0, 1\},$
- ▶ acts: $f \in \mathcal{F} = \{g \mid g : S \rightarrow X\},$ e.g., f(white) = 1, f(black) = 0.

Choice over acts

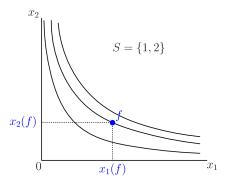
State-contingent outcomes

If the set of states S is *finite*, then one can view a *choice of act* as the *choice of a state-contingent outcome vector*:

$$x(f) = (x_1(f), ..., x_s(f), ..., x_s(f))$$

with

$$x_s(f) := f(s).$$



Savage's approach

For any two acts $f,g\in\mathcal{F}$ and any event E, the act f_Eg is defined as

$$f_E g(s) := \left\{ egin{array}{ll} f(s) & ext{for} & s \in E \\ g(s) & ext{for} & s
otin E \end{array}
ight. .$$

Special cases:

 \triangleright Constant acts x_S :

$$x_S(s) = x$$
 for $s \in S$.

Abusing notation one writes often x instead of x_S .

ightharpoonup Two-outcome acts $x_E y$:

$$x_E y(s) := \left\{ egin{array}{ll} x & ext{for} & s \in E \\ y & ext{for} & s \notin E \end{array}
ight.$$

Savage's approach

In order to say when an event E is null, one needs the concept of a preference relation conditional on event E.

Definition 2.1 (Conditional preferences \succeq_E)

For any $E \subseteq S$ and any acts f, g, h, define the preference relation conditional on event E, \succeq_E , by

$$f \succsim_E g \iff f_E h \succsim g_E h.$$

Definition 2.2 (null-event)

An event $E \subseteq S$ is null, if for all acts $f, g \in \mathcal{F}$

 $f \sim_E g$.

Savage's approach Savage's axioms

Axiom P1: Weak order

 \succsim is a *weak order*,

i.e., A1 (completeness) and A2 (transitivity) hold.

Axiom P2: "Sure-thing principle"

For any four acts $f, g, h, h' \in \mathcal{F}$ and any $E \subset S$

$$f_E h \succsim g_E h \iff f_E h' \succsim g_E h'.$$

Remark 2.1

Axioms **P1** and **P2** imply that, for all non-null events $E \subset S$, the conditional preference order \succeq_E satisfies Axiom P1.

Savage's approach

Axiom P3: State independence

For any non-null $E \subset S$,

$$x_E h \succeq_E y_E h \Leftrightarrow x \succeq y$$
.

Axiom P4: Outcome independence

For all outcomes $x,y,x',y'\in X$ such that $x\succ y$ and $x'\succ y'$ and all events $A,B\subset \mathcal{S},$

$$x_A y \succeq x_B y \Leftrightarrow x'_A y' \succeq x'_B y'.$$

Axiom P5: Non-trivial choice

There exist $f, g \in \mathcal{F}$ such that

$$f \succ g$$
.

Savage's approach Savage's axioms

Remark 2.2

- ► P3 implies that the von Neumann-Morgenstern utility function is state-independent.
- ► P4 implies that the probabilities do not depend on the outcomes.
- ► **P3** and **P5** imply that
 S is not a null event.

Savage's approach
Savage's axioms

Axiom P6: Partition of state space

For any acts $f, g, h \in \mathcal{F}$ with $f \succ g$, there exists a *finite partition* of the state space S,

$$\{E_1, E_2, ..., E_n\},\$$

such that

$$h_{E_i}f \succ g$$
 and $f \succ h_{E_i}g$

for all i = 1, ..., n.

Axiom P7: Dominance

For any $f,g\in\mathcal{F}$ and any $E\subset S$.

- If $f \succsim_E g(s)$ for all $s \in E$ then $f \succsim_E g$.
- If $g(s) \succsim_E f$ for all $s \in E$ then $g \succsim_E f$.

Savage's approach Savage's axioms

Remark 2.3

Axioms **P6** and **P7** guarantee the existence of a unique non-atomic and finitely additive probability measure.

Savage's approach

Theorem 2.1 (Savage 1954)

The following statements are equivalent:

(i) The preference order \succeq on ${\mathcal F}$ satisfies axioms

- (ii) There exist
 - ightharpoonup a non-atomic finitely additive probability measure p on S,
 - ▶ a bounded unique (up to an affine transformation) von Neumann-Morgenstern utility function $u: X \to \mathbb{R}$, such that

$$f \gtrsim g \quad \Leftrightarrow \quad \int u(f(s)) \ dp(s) \geq \int u(g(s)) \ dp(s).$$

Subjective expected utility (SEU)

In order to derive a Subjective Expected Utility (SEU) representation,

► Savage (1954) allows for arbitrary states S and arbitrary outcomes X:

$$f: S \rightarrow X$$
.

In this case, one needs many axioms because the outcome space X has little structure.

► Anscombe and Aumann (1964) consider general lotteries over outcomes X as consequences:

$$f: S \to \mathcal{P}_s(X)$$
.

In this case, the outcome space $\mathcal{P}_s(X)$ is a set of lotteries and has a nice structure,

e.g., one can form convex combinations of lotteries $p, q \in \mathcal{P}_s(X)$ for any $\alpha \in [0, 1]$:

$$\alpha p + (1 - \alpha)q \in \mathcal{P}_s(X)$$
.

Subjective and objective probabilities

- \triangleright A finite set of states: S,
- \triangleright a set of consequences X,
- ▶ the set of general lotteries on X (set of simple probability distributions on X): $\mathcal{P}_s(X)$.

An Anscombe-Aumann act (horse race lottery) associates a lottery over outcomes with a state,

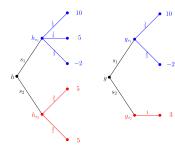
$$h: S \to \mathcal{P}_s(X)$$
.

The set of all Anscombe-Aumann acts (horse race lotteries) is denoted by

 \mathcal{H} .

Example 2.3

- ► States: $S = \{s_1, s_2\},$
- Outcomes: X = [-10, 10]
- Acts: $h = (h_{s_1}, h_{s_2}), g = (g_{s_1}, g_{s_2}) \in \mathcal{H}.$



Notation

▶ The (objective) probability of outcome $x \in X$ in state $s \in S$:

$$h_s(x)$$
.

The *lottery* in state $s \in S$:

$$h_s := (h_s(x))_{x \in \text{supp } h_s}$$

Mixture $h_{\alpha}g$ of two Anscombe-Aumann acts $h, g \in \mathcal{H}$: For any $\alpha \in [0,1]$ the Anscombe-Aumann act $h_{\alpha}g: S \to \mathcal{P}_s(X)$ is defined by

$$(h_{\alpha}g)_{s} := \alpha \cdot h_{s} + (1-\alpha) \cdot g_{s}$$

for each $s \in S$.

▶ For $h \in \mathcal{H}$ and $p \in \mathcal{P}_s(X)$, (p, h_s) denotes the Anscombe-Aumann act (horse race lottery):

$$(p, h_{-s}) := (h_1, ..., h_{s-1}, p, h_{s+1}, ..., h_S).$$

Anscombe-Aumann's approach Axioms

Axiom A1. Completeness

$$f \succeq g$$
 or $g \succeq f$.

Axiom A2. Transitivity

$$f \gtrsim g$$
 and $g \gtrsim h$ imply $f \gtrsim h$.

Axiom A3. Independence

For all $h,h',g\in\mathcal{H}$ and all $\alpha\in[0,1],$

$$h \succeq h' \Leftrightarrow h_{\alpha}g \succeq h'_{\alpha}g.$$

Axiom A4. Archimedean axiom

For all $h,h',h''\in\mathcal{H}$ such that $h\succ h'\succ h''$, there are numbers $\alpha,\beta\in(0,1)$ such that

$$h_{\alpha}h'' \succ h' \succ h_{\beta}h''$$
.

Axiom A5. Non-trivial preferences

There are $h, h' \in \mathcal{H}$ such that $h \succ h'$.

Axiom A6. State-independent von

Neumann-Morgenstern utilities

For
$$h \in \mathcal{H}$$
 and $p,q \in \mathcal{P}_s(X)$ such that $(p,h_{-s}) \succ (q,h_{-s})$,

$$(p,h_{-s'})\succ (q,h_{-s'})$$

for all non-null states $s' \in S$.

Theorem 2.2 (Anscombe & Aumann 1963)

The following statements are equivalent:

- (i) The preference order \succeq on $\mathcal H$ satisfies axioms A1, A2, A3, A4, A5, A6.
- (ii) There exist
- a non-constant and unique (up to a positive affine transformation) von Neumann-Morgenstern utility function u on X, and
- ullet a unique probability distribution π on S such that

$$h \succeq g \iff \sum_{s \in S} \pi(s) \cdot \left[\sum_{x \in \text{supp } h_s} h_s(x) \cdot u(x) \right]$$

$$\geq \sum_{s \in S} \pi(s) \cdot \left[\sum_{y \in \text{supp } g_s} g_s(x) \cdot u(x) \right].$$

Paradoxa and experimental observations

- Allais paradox ,
- ► Ellsberg paradox ,
- ► Kahnemann & Tversky (1979): *Prospect Theory*.
- There are two famous experiments challenging Expected Utility Theory:
 - Allais (1953): lotteries,
 - Ellsberg (1961): acts.
- There is a large number of experimental evidence on decision making under uncertainty:
 - Camerer and Weber (1992),
 - ► Gonzales and Wu (1999),
 - ► Kilka and Weber (2001).

Allais Paradox

		probabilities	
	0.1	0.01	0.89
Lottery A	1,000,000	1,000,000	1,000,000
Lottery B	5,000,000	0	1,000,000
Lottery C	1,000,000	1,000,000	0
Lottery D	5,000,000	0	0

- ► Subjects had to choose first between *Lottery A* and *Lottery B*, and then between *Lottery C* and *Lottery D*.
- ► Most subjects revealed the following preferences:

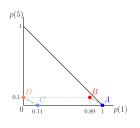
$$A \succ B$$
 and $D \succ C$.

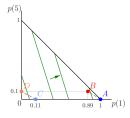
Allais Paradox

Choosing

$$A \succ B$$
 and $D \succ C$

is inconsistent with the Expected Utility Hypothesis.





Allais Paradox

- ► The framework of the *Allais' paradox* is the *choice over lotteries*, i.e., *objective* probability distributions over outcomes.
- ► The *Allais' paradox* puts into question the Expected Utility Hypothesis (EU).
- ► It suggests that the expected utility functional may not always be a good representation of actual preferences over lotteries.
- Quiggin (1982) suggests Rank-Dependent Expected Utility as an alternative representation which can deal with preferences of the Allais-paradox type.
- ► Kahnemann & Tversky (1979) suggest *Prospect Theory*.

Ellsberg paradox

- A second group of paradoxa puts into question whether people's beliefs can be represented by a unique subjective probability distribution as suggested by the Subjective Expected Utility Hypothesis (SEU) of Savage (1954).
- ► Ellsberg (1961) shows by two examples that actual behaviour may not be consistent with the assumption of a subjective probability distribution.

Ellsberg Paradox I: two urns

Subjects have to choose between two lotteries and two urns:

Urn I	
50 50	
В	R
100	0
0	100
	50 <i>B</i>

	Urn II	
	100	
	В	R
Lottery A	100	0
Lottery B	0	100

Suppose you hold *Lottery A*: Which urn would you prefer to bet on?

Urn I or Urn II?

Suppose you hold *Lottery B*: Which urn would you prefer to bet on?

Urn I or Urn II?

Ellsberg Paradox I: two urns

Most subjects chose **Urn I** in both cases.

Such choices are inconsistent with the assumption of a unique subjective probability distribution over draws from Urn II:

► A preference for Urn I given Lottery A implies:

$$0.5 = Pr(B| Urn I) > Pr(B| Urn II).$$

► A preference for Urn I given Lottery B implies:

$$0.5 = Pr(R \mid Urn \mid) > Pr(R \mid Urn \mid).$$

Ellsberg Paradox II: Three-colours urn

	Urn		
	30 60		0
	R	В	Y
Lottery A	100	0	0
Lottery B	0	100	0
Lottery C	100	0	100
Lottery D	0	100	100

Subjects had to choose

► first between

Lottery A and Lottery B

and

then between

Lottery C and Lottery D.

Ellsberg Paradox II: Three-colours urn

► Most subjects revealed the following preferences:

$$A \succ B$$
 and $D \succ C$.

Such behaviour is inconsistent with the assumption of a unique subjective probability distribution over S = {R, B, Y}:

$$A \succ B$$
 implies $\Pr(R) > \Pr(B)$ and $D \succ C$ implies $\Pr(R) + \Pr(Y) < \Pr(B) + \Pr(Y)$.