Discrete choice models incorporating revealed preferences and psychometric data

In: Econometric Models in Marketing, 2002

Taka Morikawa, Nagoya Univ.
Moshe Ben-Akiva, MIT
Daniel McFadden, Berkeley
DCM Framework

Product characteristics
Consumer characteristics

Preferences

Market behavior (RP data)

Observed variables
Latent variable
Observed variable
DCM Framework

- **Product characteristics**
- **Consumer characteristics**

Preferences

- X_j is a set of product j's characteristics
- D_i is a set of consumer i's characteristics

$$U_{ij} = V_{ij}(X_j, D_i) + \epsilon_{ij}$$

Market behavior (RP data)

$$P(y_i = j) = \Gamma(V_i.)$$
DCM Framework

Product characteristics
Consumer characteristics

Preferences

Market behavior (RP data)

X_j is a set of product j's characteristics
D_i is a set of consumer i's characteristics

$U_{ij} = X_j \beta + D_i \gamma + \epsilon_{ij}$
$\epsilon_{ij} \sim i.i.d. \text{EVI}$

$P(d_i = j) = \frac{e^{X_j \beta + D_i \gamma}}{\sum_k e^{X_k \beta + D_i \gamma}}$
DCM Framework

Challenges with RP data:
- Lack of the data about consumers
- Possible multicollinearity in product characteristics
- No data on the actual choice of only hypothetical alternatives:
 - New characteristics
 - New values of present characteristics
- Unknown actual choice set or consideration set
DCM Framework

Product characteristics
Consumer characteristics

Preferences

Opportunities with SP data:
• Preferences for non-existing alternatives or attributes
• The choice set is prespecified
• Multicollinearity is avoided
• Range of attribute values can be extended

Stated Preferences
(SP data)
Challenges with SP data:

- The respondent considers only the most important attribute
- The response is influenced by an ‘inertia’ of the current actual choice
- Respondent uses the survey as an opinion statement for his benefit (overstating)
- Not consider situational constraints
- Ignores or misinterprets an attribute if an attribute value lacks reality
DCM Framework

Product characteristics
Consumer characteristics

Preferences

Structural model:

\[U_{ij}^{RP} = V_{ij}(X_j, D_i) + \epsilon_{ij}^{RP} \]
\[U_{ij}^{SP} = \Upsilon_{ij}(X_j, D_i) + \rho d_{ij}^{RP} + \epsilon_{ij}^{SP} \]

\(V \) and \(\Upsilon \) may contain the same parameters and different parts

\(\rho d_{ij}^{RP} \) in SP captures ‘inertia’
DCM Framework

Product characteristics
Consumer characteristics

Situational constraints
Preferences

Market behavior
(RP data)

Stated preferences
(SP data)

Measurement (binary) model:

\[d_{ij}^{RP} = \begin{cases} 1, & U_{ij}^{RP} \geq 0 \\ 0, & U_{ij}^{RP} < 0 \end{cases} \]

\[d_{ij}^{SP} = \begin{cases} 1, & U_{ij}^{SP} \geq 0 \\ 0, & U_{ij}^{SP} < 0 \end{cases} \]
DCM Framework

Product characteristics
Consumer characteristics

Situational constraints
Preferences

Market behavior (RP data)

Stated preferences (SP data)

Estimation technique:

\[L = \prod_{i \in RP} \prod_{j \in C_i} \left[\Pr(d_{ij}^{RP}) \right]^{d_{ij}^{RP}} \times \prod_{i \in SP} \prod_{j \in C_i} \left[\Pr(d_{ij}^{SP}) \right]^{d_{ij}^{SP}} \]
DCM Framework

Challenges with RP data:
• Heterogeneity with respect to latent consumer attributes
 • Perceptions
 • Attitudes
• Ex. in transport choice:
 • Convenience
 • Comfort
• Ex. in culture:
 • Beauty
 • Point of interest
 • Breathtaking

Product characteristics
Consumer characteristics
Preferences
Market behavior
(RP data)
DCM Framework

Product characteristics, X
Consumer characteristics, D

Preferences U

Market behavior (RP data), d

Attitudes Perceptions w

Perception indicators, y

Structural model:

$$U_{ij}^{RP} = V_{ij}(X_j, D_i, w_i) + \epsilon_{ij}^{RP}$$
$$w_i = BD_i + \epsilon_i$$

w_i are latent perceptions for alternative or its characteristics
DCM Framework

Product characteristics, X
Consumer characteristics, D

Preferences U

Attitudes
Perceptions w

Market behavior (RP data), d

Perception indicators, y

Measurement (binary) model:

$$d_{ij}^{RP} = \begin{cases} 1, & U_{ij}^{RP} \geq 0 \\ 0, & U_{ij}^{RP} < 0 \end{cases}$$

$$y_i = \Lambda w_i + \nu_i$$

w_i are latent perceptions
y_i are perception indicators
DCM Framework

Product characteristics, \(X \)
Consumer characteristics, \(D \)

Preferences \(U \)
Attitudes Perceptions \(w \)

Market behavior (RP data), \(d \)
Perception indicators, \(y \)

Estimation technique:

First stage (LISRES):

\[w_i = BD_i + \varepsilon_i \]
\[y_i = \Lambda w_i + \nu_i \]
\[y_i = \Lambda(BD_i + \varepsilon_i) + \nu_i \]

Obtain
\[\hat{w}_i = \hat{\Lambda}^{-1}y_i \]
DCM Framework

- Product characteristics, X
- Consumer characteristics, D

Preferences U

Attitudes Perceptions \hat{w}

Market behavior (RP data), d

Perception indicators, y

Estimation technique:

Second stage:

$$L = \prod_{i \in RP} \prod_{j \in C_i} \left[\Pr(d_{ij}^{RP} | X_j, D_i, \hat{w}_i) \right]^{d_{ij}^{RP}}$$
DCM Framework

Product characteristics, X
Consumer characteristics, D

Situational constraints

Preferences U

Attitudes Perceptions w

Market behavior (RP data), d^{RP}

Stated preferences (SP data), d^{SP}

Perception indicators, y
Application: train vs car choice

- Nijmegen – the city of interview
- Travel to Randstad (Amsterdam, Hague, Rotterdam)
 - By rail or by car, both approximately 2 hours
- Home conducted interview (228 respondents)
- Actual choice of intercity trip to Randstad during previous 3 months (RP data)
 - Level of service attributes (travel time, cost etc.)
 - Socio-economic characteristics (age, sex) and trip goal
 - Subjective rating of latent travel characteristics
- SP experiment of a choice between two different rail services (SP1 data, 2875 comparisons, ordered choice data)
- SP experiment of a choice between rail and car (SP2 data, 1577 comparisons, ordered choice data)
SP data: choice between two options

• Pairwise comparison:
 • SP1: two rail services
 • SP2: rail vs car
• Attributes:
 • Travel cost
 • Travel time
 • Number of transfers (for trains)
 • Luxury level of train (for trains)
• Answers:
 • Definitely choose the alternative 1
 • Probably choose the alternative 1
 • Not sure
 • Probably choose the alternative 2
 • Definitely choose the alternative 1
SP data: choice between two options

<table>
<thead>
<tr>
<th></th>
<th>RP</th>
<th>SP1</th>
<th>SP2</th>
<th>RP + SP1</th>
<th>RP + SP2</th>
<th>RP + SP1 + SP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail constant (RP)</td>
<td>0.501</td>
<td></td>
<td></td>
<td>0.455</td>
<td>0.702</td>
<td>0.718</td>
</tr>
<tr>
<td></td>
<td>(1.8)</td>
<td></td>
<td></td>
<td>(1.8)</td>
<td>(3.0)</td>
<td>(3.4)</td>
</tr>
<tr>
<td>Rail constant (SP)</td>
<td></td>
<td>-0.970</td>
<td></td>
<td></td>
<td>-3.82</td>
<td>-3.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-9.8)</td>
<td></td>
<td></td>
<td>(-4.0)</td>
<td>(-4.0)</td>
</tr>
<tr>
<td>Cost per person</td>
<td>-0.0270</td>
<td>-0.0828</td>
<td>-0.0111</td>
<td>-0.0279</td>
<td>-0.0338</td>
<td>-0.0337</td>
</tr>
<tr>
<td></td>
<td>(-4.4)</td>
<td>(-25.4)</td>
<td>(-5.6)</td>
<td>(-5.2)</td>
<td>(-6.5)</td>
<td>(-6.8)</td>
</tr>
<tr>
<td>Line-haul time</td>
<td>-0.342</td>
<td>-0.967</td>
<td>-0.156</td>
<td>-0.327</td>
<td>-0.401</td>
<td>-0.394</td>
</tr>
<tr>
<td></td>
<td>(-1.4)</td>
<td>(-11.6)</td>
<td>(-1.9)</td>
<td>(-4.9)</td>
<td>(-2.1)</td>
<td>(-6.1)</td>
</tr>
<tr>
<td>Terminal time</td>
<td>-1.61</td>
<td>-0.272</td>
<td>-1.60</td>
<td>-1.46</td>
<td>-1.47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-4.83)</td>
<td>(-1.9)</td>
<td>(-4.9)</td>
<td>(-4.63)</td>
<td>(-4.77)</td>
<td></td>
</tr>
<tr>
<td>Number of transfers</td>
<td>-0.139</td>
<td>-0.140</td>
<td>0.0433</td>
<td>-0.0478</td>
<td>-0.0348</td>
<td>-0.0569</td>
</tr>
<tr>
<td></td>
<td>(-1.0)</td>
<td>(-4.3)</td>
<td>(0.8)</td>
<td>(-3.4)</td>
<td>(-0.3)</td>
<td>(-3.8)</td>
</tr>
<tr>
<td>Comfort</td>
<td>0.493</td>
<td></td>
<td>0.166</td>
<td></td>
<td></td>
<td>0.201</td>
</tr>
<tr>
<td></td>
<td>(14.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(6.24)</td>
</tr>
<tr>
<td>Business trip dummy</td>
<td>0.902</td>
<td>-0.115</td>
<td>0.887</td>
<td>0.358</td>
<td>0.363</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.2)</td>
<td>(-1.2)</td>
<td>(3.2)</td>
<td>(1.74)</td>
<td>(1.78)</td>
<td></td>
</tr>
<tr>
<td>Female dummy</td>
<td>0.488</td>
<td>-0.102</td>
<td>0.488</td>
<td>0.230</td>
<td>0.232</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.4)</td>
<td>(-1.5)</td>
<td>(2.4)</td>
<td>(1.4)</td>
<td>(1.5)</td>
<td></td>
</tr>
<tr>
<td>Inertia dummy</td>
<td>1.60</td>
<td></td>
<td>5.68</td>
<td></td>
<td>5.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(18.7)</td>
<td></td>
<td></td>
<td></td>
<td>(4.7)</td>
<td>(4.8)</td>
</tr>
</tbody>
</table>
Predicting the latent attributes

• For both chosen and unchosen modes
• Perceptual indicators
 • Relaxation during the trip (relax)
 • Reliability of arrival time (relia)
 • Flexibility of choosing departure time (flex)
 • Ease of travelling with children or heavy luggage (ease)
 • Safety during the trip (safety)
 • Overall rating of the mode
• Each indicator is valued by 5-point scale
• Overall rating is valued by 10-point scale
• Two latent attributes:
 • Ride comfort (w_1)
 • Convenience (w_2)
Predicting the latent attributes

- Two latent attributes:
 - Ride comfort \((w_1) \)
 - Convenience \((w_2) \)
- \(w \) affected by consumer attributes \(D \) through \(B \)
- \(w \) affect perceptual indicators \(y \) through \(\Lambda \)

\[
\hat{B}' = \begin{bmatrix}
(w_1^*) & (w_2^*) \\
-0.427(-2.4) & 0.378(2.4) \\
-0.323(-1.7) & 0 \\
0 & -1.98(-9.0) \\
0.281(0.9) & 0 \\
0 & -0.396(-3.7) \\
0 & 0.482(3.5) \\
-0.339(-1.3) & 0 \\
\end{bmatrix}
\]

\[
\hat{\Lambda} = \begin{bmatrix}
(w_1^*) & (w_2^*) \\
0.433(7.6) & 0.280(3.2) \\
0.527(12.5) & 0.661(10.2) \\
0 & 0.815(14.7) \\
0 & 0.794(14.2) \\
0.462(11.6) & 0.311(5.2) \\
0.784(8.5) & 1.76(14.1) \\
\end{bmatrix}
\]
RP model with latent attributes

<table>
<thead>
<tr>
<th></th>
<th>Model w/o Latent Attributes</th>
<th>Sequential Estimation Model</th>
<th>Simultaneous Estimation Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail constant</td>
<td>0.583</td>
<td>0.322</td>
<td>−1.81</td>
</tr>
<tr>
<td></td>
<td>(2.0)</td>
<td>(1.0)</td>
<td>(−0.9)</td>
</tr>
<tr>
<td>Cost per person</td>
<td>−0.0268</td>
<td>−0.0338</td>
<td>−0.0379</td>
</tr>
<tr>
<td></td>
<td>(−4.2)</td>
<td>(−4.1)</td>
<td>(−4.3)</td>
</tr>
<tr>
<td>Line-haul time</td>
<td>−0.405</td>
<td>0.0751</td>
<td>0.379</td>
</tr>
<tr>
<td></td>
<td>(−1.6)</td>
<td>(0.2)</td>
<td>(0.9)</td>
</tr>
<tr>
<td>Terminal time</td>
<td>−1.57</td>
<td>−1.18</td>
<td>−0.818</td>
</tr>
<tr>
<td></td>
<td>(−4.2)</td>
<td>(−2.6)</td>
<td>(−2.3)</td>
</tr>
<tr>
<td>Number of transfers</td>
<td>−0.195</td>
<td>−0.316</td>
<td>−0.230</td>
</tr>
<tr>
<td></td>
<td>(−1.3)</td>
<td>(−1.7)</td>
<td>(−1.2)</td>
</tr>
<tr>
<td>Business trip dummy</td>
<td>0.942</td>
<td>1.33</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td>(3.6)</td>
<td>(3.6)</td>
<td>(3.3)</td>
</tr>
<tr>
<td>Female dummy</td>
<td>0.466</td>
<td>0.652</td>
<td>0.700</td>
</tr>
<tr>
<td></td>
<td>(2.3)</td>
<td>(2.6)</td>
<td>(2.9)</td>
</tr>
<tr>
<td>w_1^* (comfort)</td>
<td></td>
<td>0.882</td>
<td>1.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.7)</td>
<td>(1.8)</td>
</tr>
<tr>
<td>w_2^* (convenience)</td>
<td></td>
<td>1.39</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4.1)</td>
<td>(4.7)</td>
</tr>
</tbody>
</table>
Conclusion

• RP+SP+Latent variables give:
 • Identification of preferences for new alternatives/attributes (SP vs RP)
 • Bias correction for SP (SP+RP)
 • Efficiency (SP+RP+Latent variables)