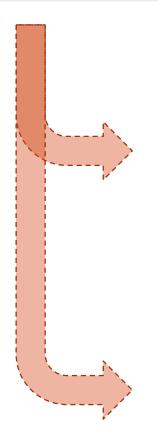
READING SEMINAR OF TEACHER-STUDENT GROUP "EMPIRICAL DEMAND ESTIMATION"

26.03.2015

Key Figures

1991

Was published in MARKETING SCIENCE


254

of citations according to Academia GOOGLE SCHOLAR

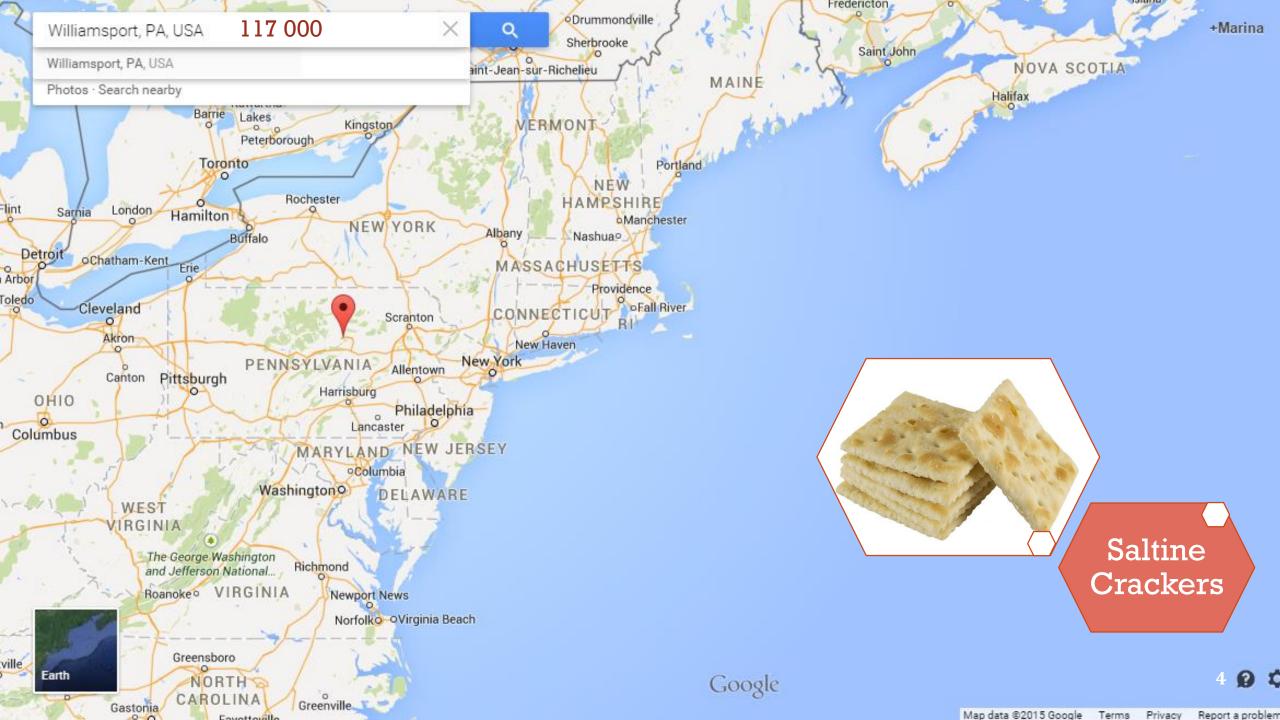
101

of citations according to WEB OF SCIENCE

A probabilistic model of purchase incidence and brand choice

Planned decision State

He or she has


- (1) considered a purchase,
- (2) made a decision to buy a given brand or not to buy at all.

Show **NO** response to point-of-purchase promotions.

Opportunistic decision State

He or she has not considered a purchase or, having considered a purchase, has not decided whether or what to buy.

May be strongly influenced by promotions.

Data (IRI scanner data)

In this market there are 10 instrumented stores:

- 1. regional chain A (stores 107-110), (Brand 2)
- 2. regional chain B (store 114), (Brand 1)
- 3. national chain C (stores 115-116),
- 4. independent chain D (stores 111-113).

The six top selling saltine brands:

Brand	UPC Code	Name	Size	Share	
1	06373 05077	SPL1	16 oz	6.8%	
2	21662 01482	SPL2	16 oz	31.9%	
3	24100 13067	Sunshine	16 oz	7.4%	
4	30100 00133	Zesta	16 oz	6.9%	
5	44000 00055	Premium 1	16 oz	6.4%	
6	44000 00057	Premium2	16 oz	26.0%	

Data

Price on National Brands

range from \$0.70 to \$1.50 per one pound box.

Price on Private Labels

range from \$0.60 to \$0.80 per one pound box.

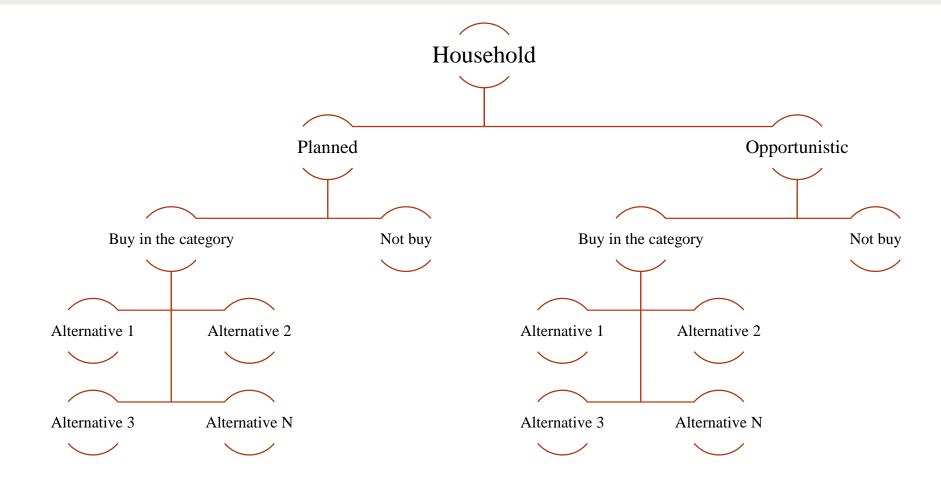
Promotion Activities

were, on average, about one week in eight.

104 weeks of the data

52-week initialization period

52-week estimation period


Purchase occasions involved the purchase of only one item.

The Two-state Model A NESTED LOGIT

Discrete Choice Model

Conceptual Framework

$$P_t^h(i) = P_t^h(plan) \cdot P_t^h(inc|plan) \cdot P_t^h(i|inc&plan) + P_t^h(opp) \cdot P_t^h(inc|opp) \cdot P_t^h(i|inc&opp)$$

The First Level

Planned State

$$P_t^h(plan) = \frac{\exp(W)}{1 + \exp(W)}$$

$$W = \beta_0 + \beta_1 \cdot DL^h + \beta_2 \cdot SL_t^h + \beta_3 \cdot INV_t^h$$

Opportunistic State

$$P_t^h(opp) = 1 - P_t^h(plan)$$

$$INV_t^h = INV_{t-1}^h + Q_{t-1}^h - CR^h \cdot I_{t-1;t}$$

 CR^h - average weekly consumption of saltines in pounds by household h (initialization period).

Store Loyalty = proportion of household h's total expenditures made in the store being visited on occasion t, **Deal Loyalty** = proportion of household h's purchases made in the initialization period when the brand purchased was being promoted.

The Second Level

Planned State

$$\begin{split} P_t^h(inc|plan) &= \frac{\exp(V_{plan})}{1 + \exp(V_{plan})} \\ V_{plan} &= \alpha_0 + \alpha_1 \cdot CR^h + \alpha_2 \cdot INV_t^h + \alpha_3 \cdot CV_{plan} \end{split}$$

Opportunistic State

$$\begin{split} P_t^h(inc|opp) &= \frac{\exp(V_{opp})}{1 + \exp(V_{opp})} \\ V_{opp} &= \alpha_4 + \alpha_1 \cdot CR^h + \alpha_2 \cdot INV_t^h + \alpha_5 \cdot CV_{plan} \end{split}$$

$$CV_{plan} = \ln\left(\sum_{k} \exp(U_{k|plan})\right) \qquad P_t^h(i|inc\&plan) = \frac{\exp(U_{i|plan})}{\sum_{k} \exp(U_{k|plan})}$$

Category Value – inclusive value; category attractiveness.

The Third Level

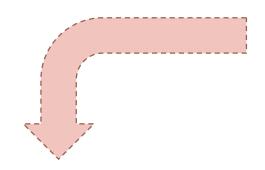
Planned State

$$P_t^h(i|inc&plan) = \frac{\exp(U_{i|plan})}{\sum_k exp(U_{k|plan})}$$
$$U_{i|plan} = \alpha_i + \theta_1 \cdot LOY_i^h + \theta_2 \cdot LPP_{it}^h$$

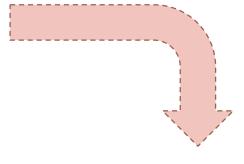
Opportunistic State

$$P_t^h(i|inc\&opp) = \frac{\exp(U_{i|opp})}{\sum_k \exp(U_{k|opp})}$$

$$Promow + \theta_{r} \cdot (Price \cdot Promow)$$


$$U_{i|opp} = \gamma_i + \theta_1 \cdot LOY_i^h + \theta_3 \cdot Price_{it} + \theta_4 \cdot Promo_{it} + \theta_5 \cdot (Price_{it} \cdot Promo_{it})$$

 $Promo_{it} = 1$ if brand *i* is featured or displayed on occasion *t* and 0 otherwise,


$$LOY_i^h = \frac{(1/k + \# \text{ of purchases of } i \text{ by } h)}{(1 + \# \text{ of purchases of all brands by } h)}$$

it is a Bayesian estimate based on equally likely priors with an equivalent sample size of one.

Calibration

456 households buy saltines

Calibration sample

52 households make

943 purchases of saltines in

15,023 store visits.

Validation sample

100 households make

612 saltine purchases in

9,999 store visits.

$$LL = \sum_{h} \sum_{t} \left[\sum_{i} y_{it}^{h} \ln \left(P_{t}^{h}(i) \right) + \left(1 - \sum_{i} y_{it}^{h} \right) \ln \left(1 - \sum_{i} P_{t}^{h}(i) \right) \right] \longrightarrow MAX$$

13) RESULTS

Brand Choice

	$P_i^h(i \text{inc&plan})$	$P_i^h(i \text{inc&opp})$
Store Private Label 1	α_1 -2.124	$\gamma_1 = 1.412$
Store Private Label 2	$(-2.67)^a$ $\alpha_2 -2.198$	γ_2 (3.08)
Sunshine	(-3.29) $\alpha_3 -0.549$	γ_3 (4.24) -0.621
Zesta	$\alpha_4 = -0.260$	γ_4 (-2.04) γ_4 0.455
Premium I	(-0.55) $\alpha_5 -1.021$	γ_5 (1.85) -0.394
LOY [*] ₁ (Loyalty)	β_1 (-1.91) 3.268	β_1 (-1.35) 3.268 ^b
LPh (Last Purchase)	β_2 (10.71) β_2 1.896	(10.71)
	(11.04)	
PRICE _{it}		$\beta_3 = -17.020$ (-3.99)
PROMO _"		β_4 -6.859 (-2.68)
$PRICE_{ii} \times PROMO_{ii}$		β_5 11.204 (3.00)

	Purchase	<i>Incidence</i>		Decisio	n State
P_i^h	(inc plan)	P_i^h (inc opp)	$P_i^h(\mathfrak{p})$	olan)
Intercept	$\theta_0 = -3.968$	Intercept	θ_4 4.893	Intercept	$\delta_1 = -0.750$
	(-13.30)		(2.77)		(-2.12)
CR*	θ_1 2.837	CR*	θ_1 2.837°	DL [*]	$\delta_2 = -1.813$
	(9.14)		(9.14)		(-3.63)
INV,*	$\theta_2 = -0.516$	INV,	$\theta_2 - 0.516^c$	SL¦	δ_3 2.463
	(-11.01)		(-11.01)		(7.00)
CV_{plan}	θ_3 0.260	CV_{opp}	θ_5 0.689	INV#	$\delta_4 = 0.361$
	(4.22)		(6.29)		(2.63)

Model Validation

The one-state nested logit model

Consumers are always opportunistic

$$P_{t}^{h}(i) = P_{t}^{h}(\text{inc})P_{t}^{h}(i|\text{inc}),$$

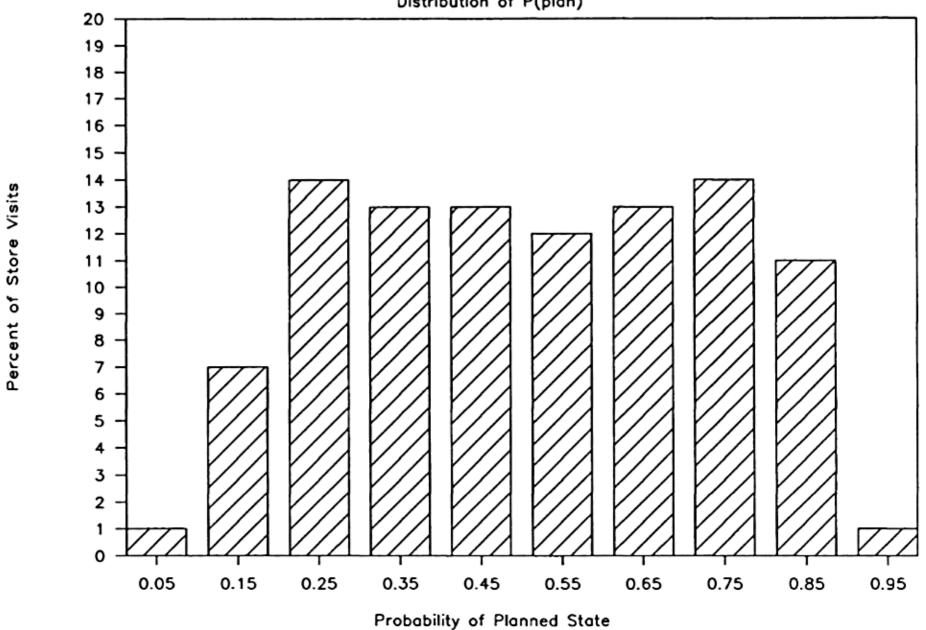
$$P_{t}^{h}(i|\text{inc}) = \frac{\exp(U_{i})}{\sum_{k} \exp(U_{k})},$$

$$U_{i} = \alpha_{i} + \beta_{1}\text{LOY}_{i}^{h} + \beta_{2}\text{LP}_{ii}^{h} + \beta_{3}\text{PRICE}_{it}$$

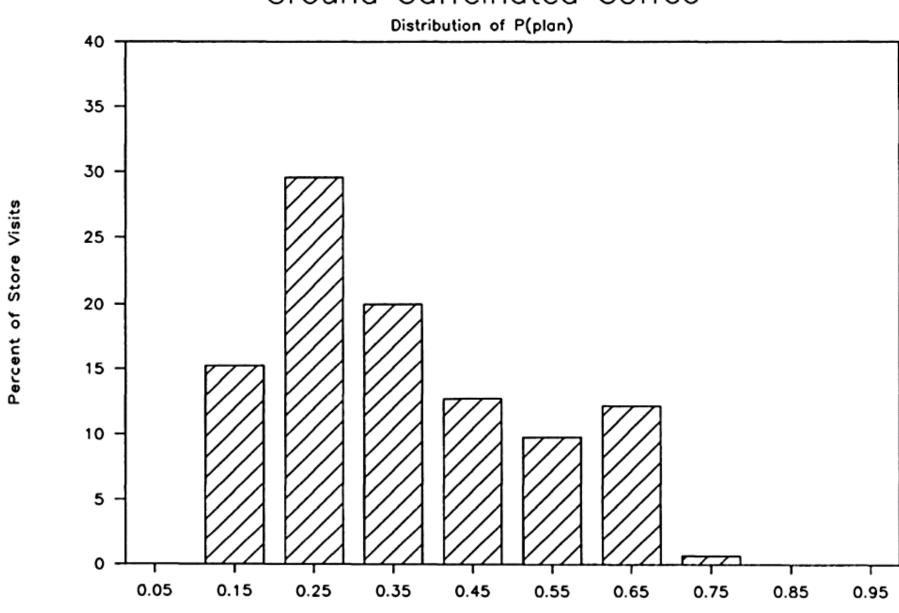
$$+ \beta_{4}\text{PROMO}_{it} + \beta_{5}(\text{PRICE}_{it} \times \text{PROMO}_{it}),$$

$$P_{t}^{h}(\text{inc}) = \frac{\exp(V)}{1 + \exp(V)},$$

$$V = \theta_{4} + \theta_{1}\text{CR}^{h} + \theta_{2}\text{INV}_{t}^{h} + \theta_{5}\text{CV}, \quad \text{and}$$


$$\text{CV} = \ln\left(\sum_{k} \exp(U_{k})\right).$$

Was calibrated following the maximum likelihood procedure described by Guadagni and Little (1987)


$P_i^h(i \text{inc})$		Hold-out s	ample	$P_t^h(inc)$			
Store Private Label 1	α_1	1.073 (2.63) ^a	Intercept	θ_{4}	-4.350 (-41.66)		
Store Private Label 2	α_2	0.837 (2.14)	CR ^h	$ heta_1$	2.629 (9.24)		
Sunshine	α_3	-0.209 (-1.06)	INV_t^h	$ heta_2$	-0.446 (-11.51)		
Zesta	α_4	0.450 (2.54)	CV	θ_3	0.398 (14.06)		
Premium 1	α_5	-0.259 (-1.18)			, ,		on sample
LOY ^h Loyalty)	$oldsymbol{eta}_1$	3.058 (14.23)	Log Likelihood	1		Two-State -3696.4	One-State -3803.4
LP ^h _{ii} (Last Purchase)	eta_2	1.476 (12.05)	Akaike Inform U^2		erion	-3090.4 -3721.4 0.207	-3803.4 -3817.4 0.184
PRICE _{ii}	eta_3	-1.001 (-1.68)				Hold-out	
PROMO _{it}	eta_4	1.603 (2.51)			Two	State	One-State
$PRICE_{it} \times PROMO_{it}$	$oldsymbol{eta_5}$	0.022 (0.04)	Log Likelih	ood	-23	97.4	-2441.2

Saltine Crackers

Ground Caffeinated Coffee

Probability of Planned State

THANK YOU FOR YOUR ATTENTION! ©

Any questions?

