• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Теория вероятностей и математическая статистика

2018/2019
Учебный год
RUS
Обучение ведется на русском языке
3
Кредиты
Статус:
Курс обязательный
Когда читается:
2-й курс, 1 модуль

Преподаватель

Программа дисциплины

Аннотация

Курс «Теория вероятностей и математическая статистика » призван сформировать у студентов навыки работы с абстрактными понятиями высшей математики, умения решать типовые задачи дисциплины,знакомство с прикладными задачами дисциплины; В результате освоения учебной дисциплины, студенты должны владеть следующими знаниями, умениями и навыками:  знать основные понятия теории вероятностей и математической статистики, необходимые для дальнейшего изучения других дисциплин, предусмотренных учебным планом;  уметь применять методы дисциплины для решения задач, возникающих в других дисциплинах;  владеть навыками применения современного инструментария дисциплины.
Цель освоения дисциплины

Цель освоения дисциплины

  •  формирование навыков работы с абстрактными понятиями высшей математики;
  •  знакомство с прикладными задачами дисциплины;
  • формирование умения решать типовые задачи дисциплины.
Планируемые результаты обучения

Планируемые результаты обучения

  • Решает задачи теории статистического оценивания и проверки гипотез
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Математическая статистика.
    Тема 1. Элементы теории статистического оценивания Статистические методы обработки экспериментальных данных. Основные понятия и задачи математической статистики. Генеральная совокупность, выборка, результаты наблюдений, статистика, статистическая оценка, требования к оценкам. Состоятельные оценки и методы их получения. Методы моментов, квантилей и максимума правдоподобия. Понятие эффективной оценки и условия эффективности. Примеры эффективных и неэффективных оценок. Доверительное оценивание. Приближенные методы построения довери¬тельных множеств, основанные на асимптотических свойствах оценок. Точные методы построения с помощью центральных статистик. Интервальные оценки для вероятностей, математического ожидания и дисперсии. Тема 2. Проверка статистических гипотез Общие понятия теории проверки гипотез. Схема проверки статистической гипотезы. Лемма Неймана-Пирсона, равномерно наиболее мощные, несмещенные и состоятельные критерии. Критерии независимости, однородности и согласия: хи-квадрат, Колмогорова-Смирнова, Мана - Уитни и другие. Проверка параметрических гипотез.
Элементы контроля

Элементы контроля

  • неблокирующий Самостоятельная работа
  • неблокирующий Контрольная работа
  • неблокирующий Экзамен
Промежуточная аттестация

Промежуточная аттестация

  • Промежуточная аттестация (1 модуль)
    0.4 * Контрольная работа + 0.2 * Самостоятельная работа + 0.4 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Кремер Н. Ш.-ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА 5-е изд., пер. и доп. Учебник и практикум для академического бакалавриата-М.:Издательство Юрайт,2019-538-Бакалавр. Академический курс-978-5-534-10004-4: -Текст электронный // ЭБС Юрайт - https://biblio-online.ru/book/teoriya-veroyatnostey-i-matematicheskaya-statistika-431167

Рекомендуемая дополнительная литература

  • Мхитарян, В. С. Теория вероятностей и математическая статистика [Электронный ресурс] : учеб. пособие / В. С. Мхитарян, Е. В. Астафьева, Ю. Н. Миронкина, Л. И. Трошин; под ред. В. С. Мхитаряна. - 2-е изд., перераб. и доп. - М.: Московский финансово-промышленный университет «Синергия», 2013. - (Университетская серия). - ISBN 978-5-4257-0106-0. - Режим доступа: http://znanium.com/catalog/product/451329