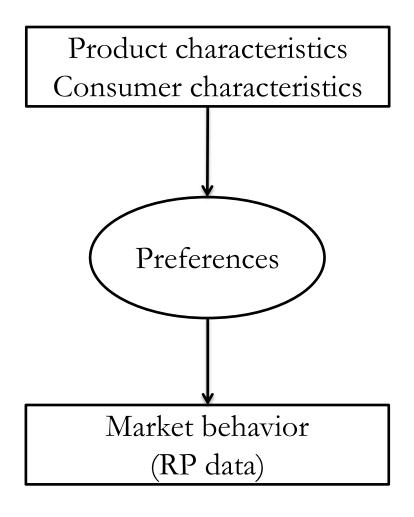

Discrete choice models incorporating revealed preferences and psychometric data

In: Econometric Models in Marketing, 2002

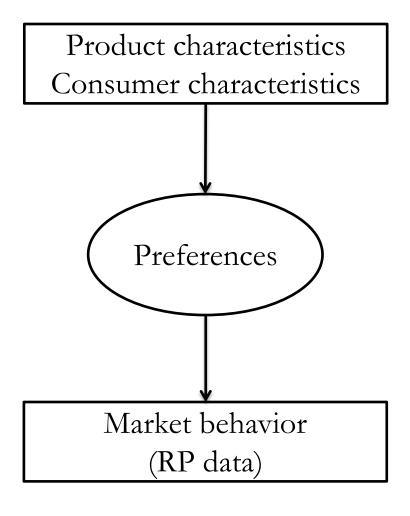
Taka Morikawa, Nagoya Univ. Moshe Ben-Akiva, MIT Daniel McFadden, Berkeley



 X_j is a set of product j's characteristics D_i is a set of consumer i's characteristics

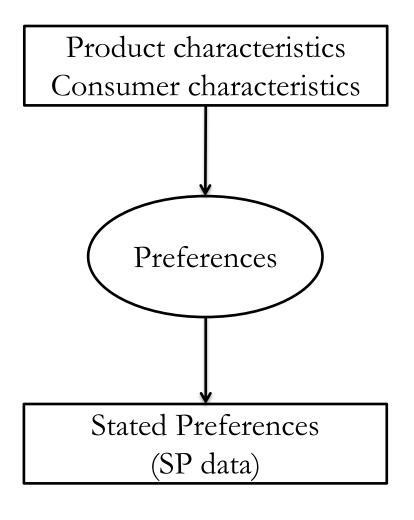
$$U_{ij} = V_{ij}(X_j, D_i) + \epsilon_{ij}$$

$$P(y_i = j) = \Gamma(V_{i\cdot})$$

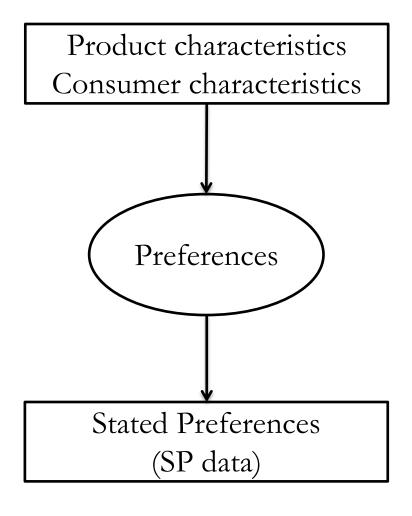


 X_j is a set of product j's characteristics D_i is a set of consumer i's characteristics

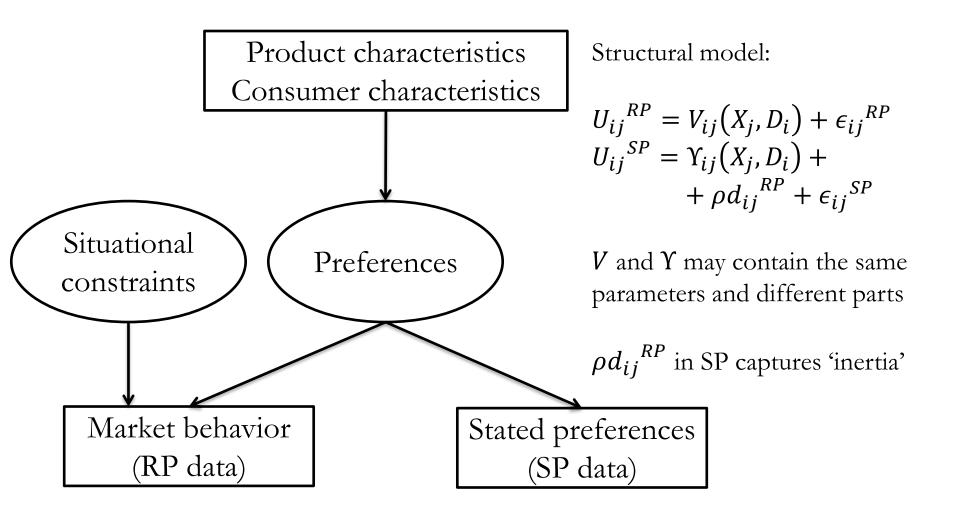
$$U_{ij} = X_j \beta + D_i \gamma + \epsilon_{ij}$$

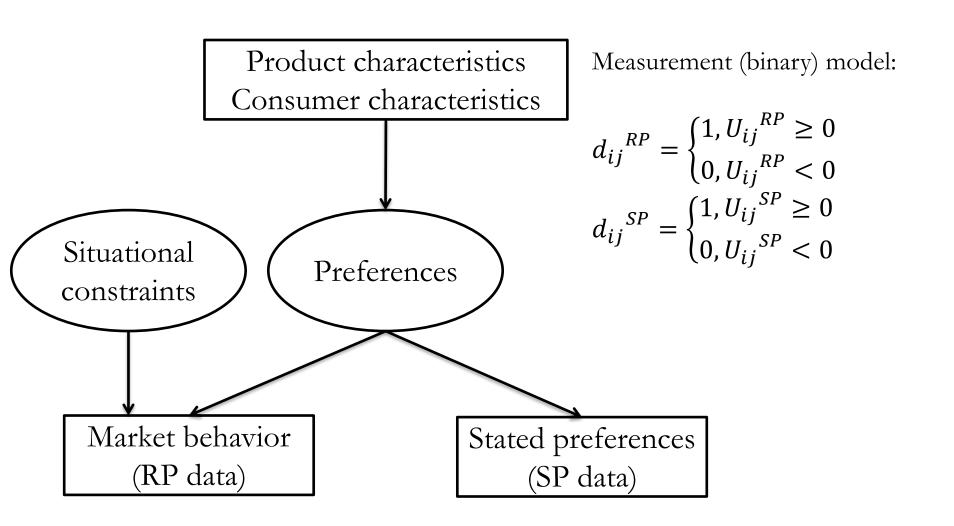

$$\epsilon_{ij} \sim i.i.d. \text{ EVI}$$

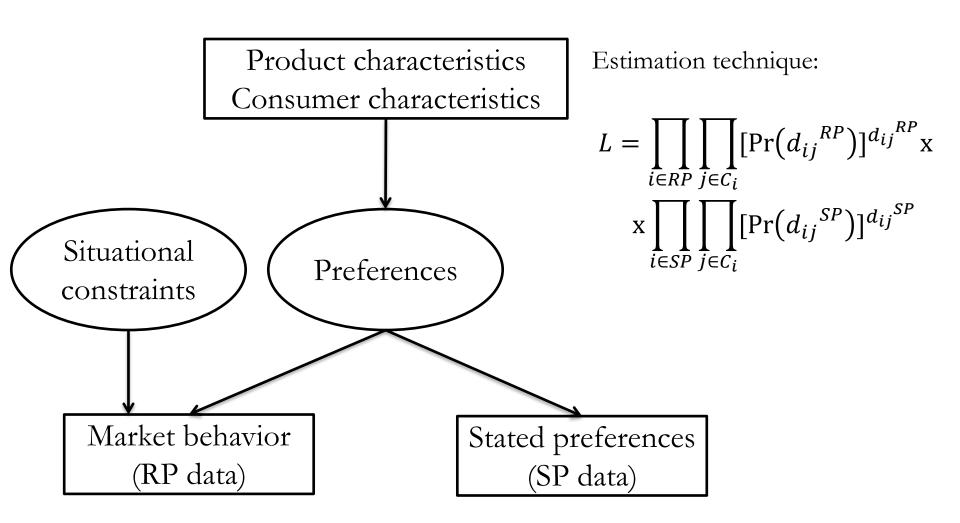
$$P(d_i = j) = \frac{e^{X_j \beta + D_i \gamma}}{\sum_k e^{X_k \beta + D_i \gamma}}$$

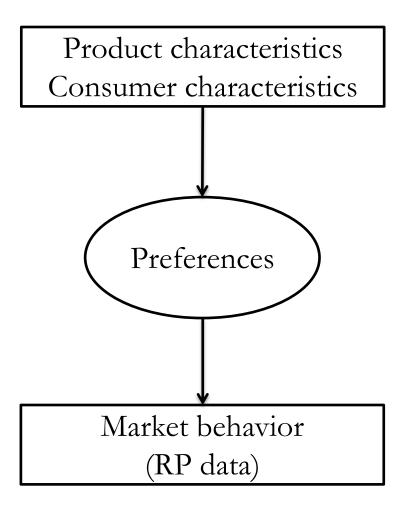

Challenges with RP data:

- Lack of the data about consumers
- Possible multicollinearity in product characteristics
- No data on the actual choice of only hypothetical alternatives:
 - New characteristics
 - New values of present characteristics
- Unknown actual choice set or consideration set

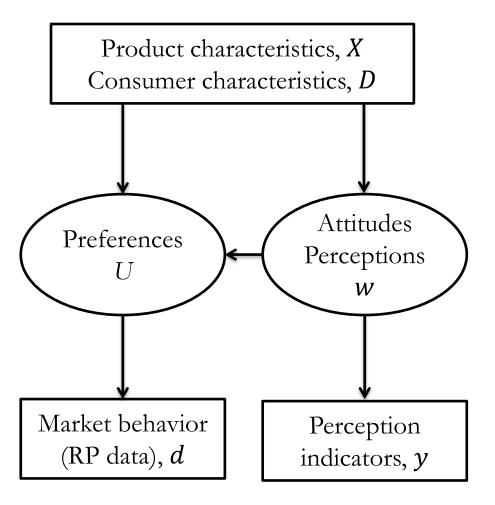

Opportunities with SP data:


- Preferences for non-existing alternatives or attributes
- The choice set is prespecified
- Multicollinearity is avoided
- Range of attribute values can be extended



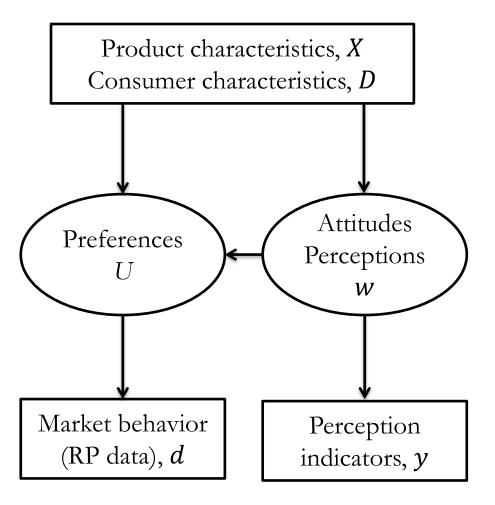

Challenges with SP data:

- The respondent considers only the most important attribute
- The response is influenced by an 'inertia' of the current actual choice
- Respondent use the survey as an opinion statement for his benefit (overstating)
- Not consider situational constraints
- Ignores or misinterprets an attribute if an attribute value lacks reality



Challenges with RP data:

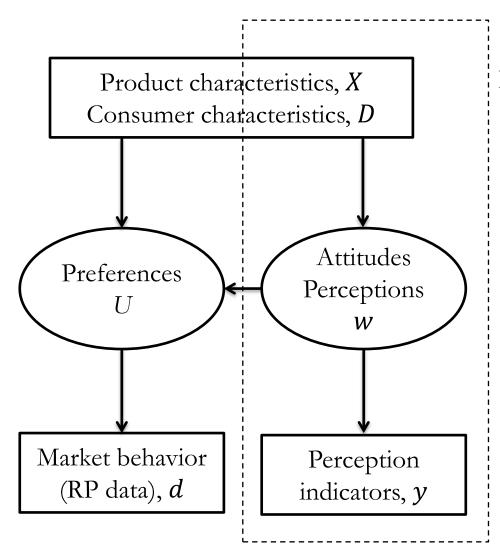
- Heterogeneity with respect to latent consumer attributes
 - Perceptions
 - Attitudes
- Ex. in transport choice:
 - Convenience
 - Comfort
- Ex. in culture:
 - Beauty
 - Point of interest
 - Breathtaking



Structural model:

$$U_{ij}^{RP} = V_{ij}(X_j, D_i, w_i) + \epsilon_{ij}^{RP}$$

$$w_i = BD_i + \epsilon_i$$

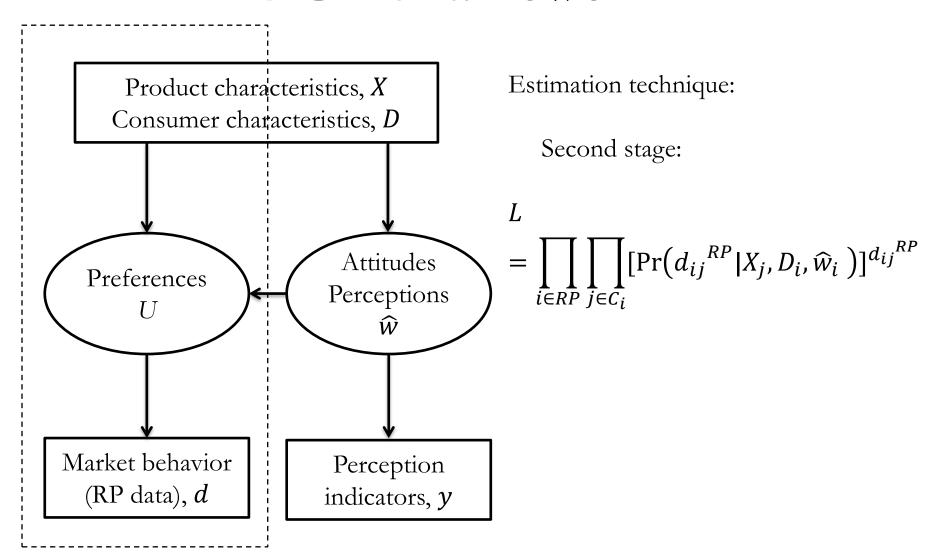

 w_i are latent perceptions for alternative or its characteristics

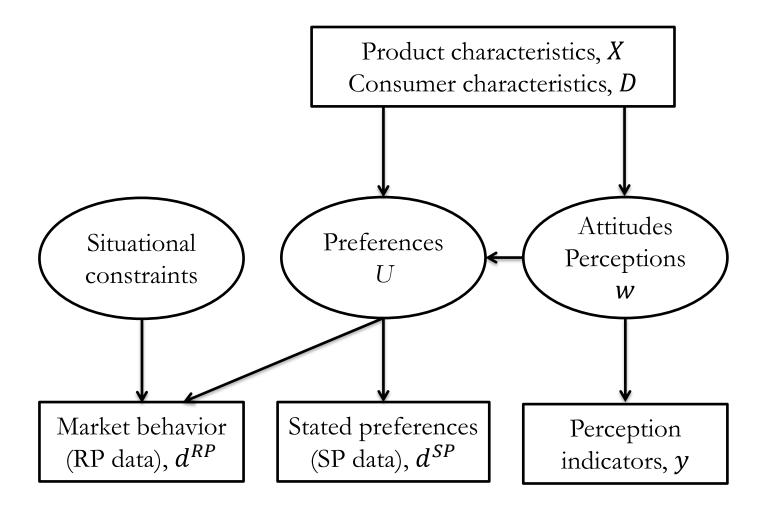
Measurement (binary) model:

$$d_{ij}^{RP} = \begin{cases} 1, U_{ij}^{RP} \ge 0 \\ 0, U_{ij}^{RP} < 0 \end{cases}$$
$$y_i = \Lambda w_i + \nu_i$$

 w_i are latent perceptions y_i are perception indicators

Estimation technique:


First stage (LISRES):


$$w_i = BD_i + \varepsilon_i$$

$$y_i = \Lambda w_i + \nu_i$$

$$y_i = \Lambda(BD_i + \varepsilon_i) + \nu_i$$

Obtain

$$\widehat{w}_i = \widehat{\Lambda}^{-1} y_i$$

Application: train vs car choice

- Nijmegen the city of interview
- Travel to Randstad (Amsterdam, Hague, Rotterdam)
 - By rail or by car, both approximately 2 hours
- Home conducted interview (228 respondents)
- Actual choice of intercity trip to Randstad during previous 3 months (RP data)
 - Level of service attributes (travel time, cost etc.)
 - Socio-economic characteristics (age, sex) and trip goal
 - Subjective rating of latent travel characteristics
- SP experiment of a choice between two different rail services (SP1 data, 2875 comparisons, ordered choice data)
- SP experiment of a choice between rail and car (SP2 data, 1577 comparisons, ordered choice data)

SP data: choice between two options

- Pairwise comparison:
 - SP1: two rail services
 - SP2: rail vs car
- Attributes:
 - Travel cost
 - Travel time
 - Number of transfers (for trains)
 - Luxury level of train (for trains)
- Answers:
 - Definitely choose the alternative 1
 - Probably choose the alternative 1
 - Not sure
 - Probably choose the alternative 2
 - Definitely choose the alternative 1

SP data: choice between two options

	RP	SP1	SP2	RP+SP1	RP+SP2	RP+SP1 +SP2
Rail constant (RP)	0.501			0.455	0.702	0.718
	(1.8)			(1.8)	(3.0)	(3.4)
Rail constant (SP)			-0.970		-3.82	-3.82
. ,			(-9.8)		(-4.0)	(-4.0)
Cost per person	-0.0270	-0.0828	-0.0111	-0.0279	-0.0338	-0.0337
	(-4.4)	(-25.4)	(-5.6)	(-5.2)	(-6.5)	(-6.8)
Line-haul time	-0.342	-0.967	-0.156	-0.327	-0.401	-0.394
	(-1.4)	(-11.6)	(-1.9)	(-4.9)	(-2.1)	(-6.1)
Terminal time	-1.61		-0.272	-1.60	-1.46	-1.47
	(-4.83)		(-1.9)	(-4.9)	(-4.63)	(-4.77)
Number of transfers	-0.139	-0.140	0.0433	-0.0478	-0.0348	-0.0569
	(-1.0)	(-4.3)	(0.8)	(-3.4)	(-0.3)	(-3.8)
Comfort		0.493		0.166		0.201
		(14.4)		(4.9)		(6.24)
Business trip dummy	0.902		-0.115	0.887	0.358	0.363
	(3.2)		(-1.2)	(3.2)	(1.74)	(1.78)
Female dummy	0.488		-0.102	0.488	0.230	0.232
	(2.4)		(-1.5)	(2.4)	(1.4)	(1.5)
Inertia dummy			1.60		5.68	5.70
			(18.7)		(4.7)	(4.8)

Predicting the latent attributes

- For both chosen and unchosen modes
- Perceptional indicators
 - Relaxation during the trip (relax)
 - Reliability of arrival time (relia)
 - Flexibility of choosing departure time (flex)
 - Ease of travelling with children or heavy luggage (ease)
 - Safety during the trip (safety)
 - Overall rating of the mode
- Each indicator is valued by 5-point scale
- Overall rating is values by 10-point scale
- Two latent attributes:
 - Ride comfort (w_1)
 - Convenience (w_2)

Predicting the latent attributes

- Two latent attributes:
 - Ride comfort (w_1)
 - Convenience (w_2)
- w affected by consumer attributes D through B
- w affect perceptional indicators y through Λ

$$\hat{\mathbf{B}}' = \begin{bmatrix} (w_1^*) & (w_2^*) \\ -0.427(-2.4) & 0.378(2.4) & (aged) \\ -0.323(-1.7) & 0 & (lhtime) \\ 0 & -1.98(-9.0) & (trmtime) \\ 0.281(0.9) & 0 & (first) \\ 0 & -0.396(-3.7) & (xfern) \\ 0 & 0.482(3.5) & (freepark) \\ -0.339(-1.3) & 0 & (aged \times lhtime) \end{bmatrix}$$

$$\hat{\Lambda} = \begin{bmatrix} (w_1^*) & (w_2^*) \\ 0.433(7.6) & 0.280(3.2) & (relax) \\ 0.527(12.5) & 0.661(10.2) & (relia) \\ 0 & 0.815(14.7) & (flex) \\ 0 & 0.794(14.2) & (ease) \\ 0.462(11.6) & 0.311(5.2) & (safe) \\ 0.784(8.5) & 1.76(14.1) & (overall) \end{bmatrix}$$

RP model with latent attributes

	Model w/o	Sequential Estimation	
	Latent Attributes	Model	Model
Rail constant	0.583	0.322	-1.81
	(2.0)	(1.0)	(-0.9)
Cost per person	-0.0268	-0.0338	-0.0379
	(-4.2)	(-4.1)	(-4.3)
Line-haul time	-0.405	0.0751	0.379
	(-1.6)	(0.2)	(0.9)
Terminal time	-1.57	-1.18	-0.818
	(-4.2)	(-2.6)	(-2.3)
Number of transfers	-0.195	-0.316	-0.230
	(-1.3)	(-1.7)	(-1.2)
Business trip dummy	0.942	1.33	1.28
	(3.6)	(3.6)	(3.3)
Female dummy	0.466	0.652	0.700
	(2.3)	(2.6)	(2.9)
w [*] (comfort)		0.882	1.29
		(2.7)	(1.8)
w ₂ * (convenience)		1.39	1.10
		(4.1)	(4.7)
		` /	` /

Conclusion

- RP+SP+Latent variables give:
 - Identification of preferences for new alternatives/attributes (SP vs RP)
 - Bias correction for SP (SP+RP)
 - Efficiency (SP+RP+Latent variables)