Testing the heterogeneity of real estate sellers

Evgeniy M. Ozhegov Aleksandra Sidorovykh

National Research University Higher School of Economics Group for Applied Markets and Enterprises Studies

> 14.10.2015 GAMES Seminar

Ozhegov, Sidorovykh (HSE)

- Introduction
- Literature review
- Data description
- Methodology
- Results
- Conclusion

글 🛌 😑

A

• Heterogeneity of consumers are widely studied;

- Different pricing strategies over types of sellers: realtors and individuals;
- Individuals are more patient?
- Possible types of data:
 - Data on transactions: Actual sales price vs. No dynamics of price, Can not control on unobservables;
 - Data from MLS: Dynamics of the price vs. Nonrandom attrition, Absence of selling price.

- Heterogeneity of consumers are widely studied;
- Different pricing strategies over types of sellers: realtors and individuals;
- Individuals are more patient?
- Possible types of data:
 - Data on transactions: Actual sales price vs. No dynamics of price, Can not control on unobservables;
 - Data from MLS: Dynamics of the price vs. Nonrandom attrition, Absence of selling price.

- Heterogeneity of consumers are widely studied;
- Different pricing strategies over types of sellers: realtors and individuals;
- Individuals are more patient?
- Possible types of data:
 - Data on transactions: Actual sales price vs. No dynamics of price, Can not control on unobservables;
 - Data from MLS: Dynamics of the price vs. Nonrandom attrition, Absence of selling price.

- Heterogeneity of consumers are widely studied;
- Different pricing strategies over types of sellers: realtors and individuals;
- Individuals are more patient?
- Possible types of data:
 - Data on transactions: Actual sales price vs. No dynamics of price, Can not control on unobservables;
 - Data from MLS: Dynamics of the price vs. Nonrandom attrition, Absence of selling price.

- Heterogeneity of consumers are widely studied;
- Different pricing strategies over types of sellers: realtors and individuals;
- Individuals are more patient?
- Possible types of data:
 - Data on transactions: Actual sales price vs. No dynamics of price, Can not control on unobservables;
 - Data from MLS: Dynamics of the price vs. Nonrandom attrition, Absence of selling price.

- Heterogeneity of consumers are widely studied;
- Different pricing strategies over types of sellers: realtors and individuals;
- Individuals are more patient?
- Possible types of data:
 - Data on transactions: Actual sales price vs. No dynamics of price, Can not control on unobservables;
 - Data from MLS: Dynamics of the price vs. Nonrandom attrition, Absence of selling price.

• Research of real estate supply:

- Determination of the optimal asking price;
- Examination of the relationship between asking price, selling price, and duration of sale;
- Identification sellers' characteristics effect on selling price and duration of sale.

• Research of real estate supply:

- Determination of the optimal asking price;
- Examination of the relationship between asking price, selling price, and duration of sale;
- Identification sellers' characteristics effect on selling price and duration of sale.

- Research of real estate supply:
 - Determination of the optimal asking price;
 - Examination of the relationship between asking price, selling price, and duration of sale;
 - Identification sellers' characteristics effect on selling price and duration of sale.

- Research of real estate supply:
 - Determination of the optimal asking price;
 - Examination of the relationship between asking price, selling price, and duration of sale;
 - Identification sellers' characteristics effect on selling price and duration of sale.

- Springer T.M. (JREEF, 1996) "Single-Family Housing Transactions: Seller Motivations, Price, and Marketing Time":
 - Broker sold houses, no FSBO;
 - Impact of seller's motivation on selling prices and duration of sale by Price_i = f(Prop.char._i, Mark.cond._i, Seller's motivation_i) Mark.Time_i = g(Prop.char._i, Mark.cond._i, Seller's motivation_i)
 - Motivation measures:
 - Negotiating Pad (percentage difference between the listing price and the value of the property estimated as of the time of listing);
 - Eager (1 indicating the seller "is motivated, is anxious, or must sell").
 - Relocated (1 indicating the seller has been transferred or otherwise relocated);
 - Selling Bonus (1 indicating the seller is willing to pay additional compensation to the selling broker for either a timely sale or for meeting a specified price);
 - Foreclosure (1 indicating a house with a foreclosure history);
 - Vacant (1 indicating the house is unoccupied).

イロト イポト イヨト イヨト

- Springer T.M. (JREEF, 1996) "Single-Family Housing Transactions: Seller Motivations, Price, and Marketing Time":
 - Broker sold houses, no FSBO;
 - Impact of seller's motivation on selling prices and duration of sale by Price_i = f(Prop.char._i, Mark.cond._i, Seller's motivation_i) Mark.Time_i = g(Prop.char._i, Mark.cond._i, Seller's motivation_i)
 - Motivation measures:
 - Negotiating Pad (percentage difference between the listing price and the value of the property estimated as of the time of listing);
 - Eager (1 indicating the seller "is motivated, is anxious, or must sell").
 - Relocated (1 indicating the seller has been transferred or otherwise relocated);
 - Selling Bonus (1 indicating the seller is willing to pay additional compensation to the selling broker for either a timely sale or for meeting a specified price);
 - Foreclosure (1 indicating a house with a foreclosure history);
 - Vacant (1 indicating the house is unoccupied).

イロト イポト イヨト イヨト

- Springer T.M. (JREEF, 1996) "Single-Family Housing Transactions: Seller Motivations, Price, and Marketing Time":
 - Broker sold houses, no FSBO;
 - Impact of seller's motivation on selling prices and duration of sale by *Price_i* = f(*Prop.char._i*, *Mark.cond._i*, *Seller's motivation_i*) *Mark.Time_i* = g(*Prop.char._i*, *Mark.cond._i*, *Seller's motivation_i*)
 - Motivation measures
 - Negotiating Pad (percentage difference between the listing price and the value of the property estimated as of the time of listing);
 - Eager (1 indicating the seller "is motivated, is anxious, or must sell");
 - Relocated (1 indicating the seller has been transferred or otherwise relocated);
 - Selling Bonus (1 indicating the seller is willing to pay additional compensation to the selling broker for either a timely sale or for meeting a specified price);
 - Foreclosure (1 indicating a house with a foreclosure history);
 - Vacant (1 indicating the house is unoccupied).

- Springer T.M. (JREEF, 1996) "Single-Family Housing Transactions: Seller Motivations, Price, and Marketing Time":
 - Broker sold houses, no FSBO;
 - Impact of seller's motivation on selling prices and duration of sale by Price_i = f(Prop.char._i, Mark.cond._i, Seller's motivation_i) Mark.Time_i = g(Prop.char._i, Mark.cond._i, Seller's motivation_i)
 - Motivation measures:
 - Negotiating Pad (percentage difference between the listing price and the value of the property estimated as of the time of listing);
 - Eager (1 indicating the seller "is motivated, is anxious, or must sell");
 - Relocated (1 indicating the seller has been transferred or otherwise relocated);
 - Selling Bonus (1 indicating the seller is willing to pay additional compensation to the selling broker for either a timely sale or for meeting a specified price);
 - Foreclosure (1 indicating a house with a foreclosure history);
 - Vacant (1 indicating the house is unoccupied).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Levitt, S. & Syverson, C. (Review of Ec&Stat, 2008) «Market distortions when agents are better informed: the value of information in real estate transactions»:
 - All realtors listings in county but no FSBO, 10 years, 100000 obj.;
 - Fact of sell, Sell price and Time to sale (if sold);
 - Real estate agents sell their own houses, on average, 3.7% more expensive and 9.5 days longer than houses of their clients;
 - Private individuals may be less patient:
 - when they relocate due to a job change;
 - because they're more risk averse.

- Levitt, S. & Syverson, C. (Review of Ec&Stat, 2008) «Market distortions when agents are better informed: the value of information in real estate transactions»:
 - All realtors listings in county but no FSBO, 10 years, 100000 obj.;
 - Fact of sell, Sell price and Time to sale (if sold);
 - Real estate agents sell their own houses, on average, 3.7% more expensive and 9.5 days longer than houses of their clients;
 - Private individuals may be less patient:
 - when they relocate due to a job change;
 - because they're more risk averse.

- Levitt, S. & Syverson, C. (Review of Ec&Stat, 2008) «Market distortions when agents are better informed: the value of information in real estate transactions»:
 - All realtors listings in county but no FSBO, 10 years, 100000 obj.;
 - Fact of sell, Sell price and Time to sale (if sold);
 - Real estate agents sell their own houses, on average, 3.7% more expensive and 9.5 days longer than houses of their clients;
 - Private individuals may be less patient:
 - when they relocate due to a job change;
 - because they're more risk averse.

- Levitt, S. & Syverson, C. (Review of Ec&Stat, 2008) «Market distortions when agents are better informed: the value of information in real estate transactions»:
 - All realtors listings in county but no FSBO, 10 years, 100000 obj.;
 - Fact of sell, Sell price and Time to sale (if sold);
 - Real estate agents sell their own houses, on average, 3.7% more expensive and 9.5 days longer than houses of their clients;
 - Private individuals may be less patient:
 - when they relocate due to a job change;
 - because they're more risk averse.

- Levitt, S. & Syverson, C. (Review of Ec&Stat, 2008) «Market distortions when agents are better informed: the value of information in real estate transactions»:
 - All realtors listings in county but no FSBO, 10 years, 100000 obj.;
 - Fact of sell, Sell price and Time to sale (if sold);
 - Real estate agents sell their own houses, on average, 3.7% more expensive and 9.5 days longer than houses of their clients;
 - Private individuals may be less patient:
 - when they relocate due to a job change;
 - because they're more risk averse.

- Levitt, S. & Syverson, C. (Review of Ec&Stat, 2008) «Market distortions when agents are better informed: the value of information in real estate transactions»:
 - All realtors listings in county but no FSBO, 10 years, 100000 obj.;
 - Fact of sell, Sell price and Time to sale (if sold);
 - Real estate agents sell their own houses, on average, 3.7% more expensive and 9.5 days longer than houses of their clients;
 - Private individuals may be less patient:
 - when they relocate due to a job change;
 - because they're more risk averse.

- Knight J.R. (REE, 2002) "Listing price, time on market, and ultimate selling price: causes and effects of listing price changes":
 - Data on transactions, one price change, no FSBO;
 - Determinants of price change by Prob.(Change of list price_i) = - f(Mark Time: Markup: Vacant: Motivat.
 - The revision of list price depends mainly on the length of time the house is on sale and the initial markup.

- Knight J.R. (REE, 2002) "Listing price, time on market, and ultimate selling price: causes and effects of listing price changes":
 - Data on transactions, one price change, no FSBO;
 - Determinants of price change by Prob.(Change of list price_i) = = f(Mark.Time_i, Markup_i, Vacant_i, Motivated_i, Price_i);
 - The revision of list price depends mainly on the length of time the house is on sale and the initial markup.

- Knight J.R. (REE, 2002) "Listing price, time on market, and ultimate selling price: causes and effects of listing price changes":
 - Data on transactions, one price change, no FSBO;
 - Determinants of price change by Prob.(Change of list price_i) =
 - $= f(Mark.Time_i, Markup_i, Vacant_i, Motivated_i, Price_i);$
 - The revision of list price depends mainly on the length of time the house is on sale and the initial markup.

- Knight J.R. (REE, 2002) "Listing price, time on market, and ultimate selling price: causes and effects of listing price changes":
 - Data on transactions, one price change, no FSBO;
 - Determinants of price change by Prob.(Change of list price_i) = = f(Mark.Time_i, Markup_i, Vacant_i, Motivated_i, Price_i);
 - The revision of list price depends mainly on the length of time the house is on sale and the initial markup.

• Source: Metrosphera (MLS)

- Secondary market, flats only, Perm only
- Daily observations
- Period of observation 27.10.2014 01.02.2015 (98 days)
- 18037 unique objects
- 585494 observations
- Unbalanced panel

- Source: Metrosphera (MLS)
- Secondary market, flats only, Perm only
- Daily observations
- Period of observation 27.10.2014 01.02.2015 (98 days)
- 18037 unique objects
- 585494 observations
- Unbalanced panel

- Source: Metrosphera (MLS)
- Secondary market, flats only, Perm only
- Daily observations
- Period of observation 27.10.2014 01.02.2015 (98 days)
- 18037 unique objects
- 585494 observations
- Unbalanced panel

- Source: Metrosphera (MLS)
- Secondary market, flats only, Perm only
- Daily observations
- Period of observation 27.10.2014 01.02.2015 (98 days)
- 18037 unique objects
- 585494 observations
- Unbalanced panel

- Source: Metrosphera (MLS)
- Secondary market, flats only, Perm only
- Daily observations
- Period of observation 27.10.2014 01.02.2015 (98 days)
- 18037 unique objects
- 585494 observations
- Unbalanced panel

- Source: Metrosphera (MLS)
- Secondary market, flats only, Perm only
- Daily observations
- Period of observation 27.10.2014 01.02.2015 (98 days)
- 18037 unique objects
- 585494 observations
- Unbalanced panel

- Source: Metrosphera (MLS)
- Secondary market, flats only, Perm only
- Daily observations
- Period of observation 27.10.2014 01.02.2015 (98 days)
- 18037 unique objects
- 585494 observations
- Unbalanced panel

- Weekly data (14 weeks)
- Delete objects with initial listing before 27.10
- Delete outliers (outside $\pm 3\sigma$ from price for each room number and price per m^2 distributions, area > 170 m^2 , number of rooms > 5)
- 13113 unique objects
- 55375 observations

- Weekly data (14 weeks)
- Delete objects with initial listing before 27.10
- Delete outliers (outside $\pm 3\sigma$ from price for each room number and price per m^2 distributions, area > 170 m^2 , number of rooms > 5)
- 13113 unique objects
- 55375 observations

- Weekly data (14 weeks)
- Delete objects with initial listing before 27.10
- Delete outliers (outside $\pm 3\sigma$ from price for each room number and price per m^2 distributions, area > 170 m^2 , number of rooms > 5)
- 13113 unique objects
- 55375 observations

- Weekly data (14 weeks)
- Delete objects with initial listing before 27.10
- Delete outliers (outside $\pm 3\sigma$ from price for each room number and price per m^2 distributions, area > 170 m^2 , number of rooms > 5)
- 13113 unique objects
- 55375 observations

- Weekly data (14 weeks)
- Delete objects with initial listing before 27.10
- Delete outliers (outside $\pm 3\sigma$ from price for each room number and price per m^2 distributions, area > 170 m^2 , number of rooms > 5)
- 13113 unique objects
- 55375 observations

	All types		Realtors		Individuals	
	(55375 obs.)		(51317 obs.)		(4058 obs.)	
Variable	Mean	S.D.	Mean	S.D.	Mean	S.D.
Price per m ²	53014	13048	52990	12974	53313	13948
Δ price per <i>m</i> ² Av. monthly price	-105.0 56030	340.3 1394	-105.6	341.2	-98.0	328.7
In sale	0.785	0.410	0.794	0.404	0.672	0.469
Shows	1307.1	2932.3	1373.9	2994.8	461.8	1773.5
Upping	0.0002	0.015	0.0002	0.013	0 0007	0.027
Changes	1.41	0.80	1.42	0.81	1 38	0.73

Panel A. Characteristics of offers.

æ

イロト イ団ト イヨト イヨト

	All types (13113 obs.)	Realtors (11672 obs.)	Individuals (1441 obs.)	Price (th.rub.)	Pr. per m ² (th.rub.)	MT (weeks)			
_									
Area	54.8	54.9	54.7						
	(23.1)	(23.2)	(20.7)		Mean				
Rooms				2929.2	54.2	3.41			
1	4211 (32.1%)	3725 (31.9%)	486 (33.7%)	2075.9	59.1	3.02			
2	4731 (36.1%)	4219 (36.1%)	512 (35.5%)	2588.1	51.9	3.46			
3	3533 (26.9%)	3171 (27.2%)	362 (25.1%)	3721.3	51.6	3.76			
4	590 (4.5%)	515 (4.4%)	75 (5.2%)	5053.7	52.4	4.14			
5	48 (0.4%)	42 (0.4%)	6 (0.4%)	6897.0	55.3	3.04			
Material	. ,	. ,	. ,						
Bricktop	6723 (51.3%)	5976 (51.2%)	747 (51.8%)	2793.9	54.9	3.43			
Panels	5905 (45.0%)	5294 (45.4%)	611 (42.4%)	2967.2	53.9	3.41			
Wood	485 (3.7%)	402 (3.4%)	83 (5.8%)	2311.3	47.5	3.24			
Number of flo	ors	· · /	()						
Missed	2485 (19.0%)	2222 (19.0%)	263 (18.2%)	2456.8	49.8	3.57			
2-3	690 (5.3%)	621 (5.3%)	69 (4.8%)	3067.8	52.6	3.54			
4-5	4255 (32.4%)	3830 (32.8%)	425 (29.5%)	2262.1	52.5	3.25			
6-10	3690 (28.1%)	3236 (27.7%)	454 (31 .5%)	3201.9	57.1	3.42			
11-15	469 (3.6%)	394 (3.4%)	75 (5.2%)	4003.1	62.1	3.15			
16-27	1524 (11.6%)	1369 (11.7%)	155 (10.8%)	5249.8	64.2	3.90			
First floor	、 ,	、 /	. ,						
Yes	2546 (19.4%)	2274 (19.5%)	272 (18.9%)	2366.4	55.1	3.52			
No	10867 (80.6%)	9669 (80.5%)	1198 (81.1%)	2979.0	50.3	3.39			

Panel B. Characteristics of property

	All types	Realtors	In dividual s	Price	Pr.perm ²	МТ
	(13113 obs.)	(11672 obs.)	(1441 obs.)	(th.rub.)	(th.rub.)	(weeks)
					Mean	
District				2929.2	54.2	3.41
Lenininskiy	576 (4.4%)	509 (4.3%)	67 (4.6%)	4553.6	68.6	3.31
Sverdlovskiy	2245 (17.1%)	1993 (17.1%)	252 (17.5%)	3674.5	60.0	3.59
Dzerzhinskiy	1918 (14.6%)	1693 (14.5%)	225 (15.6%)	3295.9	58.3	3.37
Motovilikhinskiy	1827 (13.9%)	1591 (13.6%)	236 (16.4%)	3092.1	57.6	3.26
In dustrial'n yi	1873 (14.3%)	1670 (14.3%)	203 (14.1%)	2988.5	58.2	3.31
Kirovskiy	1918 (14.6%)	1765 (15.1%)	153 (10.6%)	2416.6	48.8	3.64
Ordzhonikidzevskiy	1466 (11.2%)	1298 (11.1%)́	168 (11.7%)́	2221.8	45.5	3.15
Type of building						
Len (1920-1932)	338 (2.6%)	308 (2.6%)	30 (2.1%)	2335.2	51.0	3.31
Stal (1930-1960)	975 (7.5%)	857 (7.4%)	118 (8.2%)	2430.4	45.2	3.64
Hr (1957-1973)	2305 (17.6%)	2074 (17.8%)	231 (16.0%)	2148 3	53.8	3.30
Br (1972-1985)	2228 (17.0%)	2021 (17.3%)	207 (14.4%)	2260.7	51.3	3.20
GP (1978-1990)	751 (5.7%)	644 (5.5%)	107 (7.4%)	2879.9	54.0	3.37
MS (1980-1987)	372 (2.9%)	340 (3.0%)	32 (2.2%)	1686.1	56.9	3.64
UP (1985-2000)	3127 (23.8%)	2744 (23.5%)	383 (26.6%)	3186.5	56.1	3.38
IP (1995-present)	2296 (17.5%)́	2094 (17.9%)́	202 (14.0%)	4637.7	60.6	3.73

Panel B. Characteristics of property.

• • • • • • • •

æ

E> < E>

Methodology. Model

$$d_{it} = \begin{cases} 1, g(y_{it}, x_{it}, t, type = j) + \eta_{it} \ge 0\\ 0, g(y_{it}, x_{it}, t, type = j) + \eta_{it} < 0 \end{cases}$$

$$y_{it}^{*} = f(x_{it}, t, type = j) + \alpha_{i} + \epsilon_{it} \qquad (1)$$

$$y_{it} = \begin{cases} y_{it}^{*}, & \text{if } d_{it-1} = 1\\ \text{is unobserved, } & \text{if } d_{it-1} = 0, \end{cases}$$

where

 d_{it} is a binary indicator of the probability of listing a property *i* in a week *t*, y_{it} is a listed price of property *i* in a week *t*,

 x_{it} are the property i's characteristics and market conditions at time t,

 $j \in \{Realtors, Individuals\}$ is a seller's type,

 α_i is unobserved property *i*'s characteristics,

 η, ϵ are unobservables with joint distribution $f_{\eta,\epsilon}(\cdot)$.

In order to drop out the α_i we use the differencing approach.

Def.
$$\Delta^t(\cdot)_{it} := (\cdot)_{it} - (\cdot)_{i1}$$

Expanding the $f(\cdot)$ in a Taylor series for each $j \in \{Realtors, Individuals\}$ will give:

$$\Delta^t y_{it}^* = \varphi_j(t) + (X_{ijt}, \Delta^t X_{ijt})\beta_j + e_{ijt}$$
(2)

We may identify $\varphi_j(t)$ as

$$\varphi_j(t) = \Delta^t y_{it} - E[\Delta^t y_{it}^* | d_{ijt-1} = 1, X_{ijt}, \Delta^t X_{ijt}]$$
(3)

In order to drop out the α_i we use the differencing approach. Def. $\Delta^t(\cdot)_{it} := (\cdot)_{it} - (\cdot)_{i1}$

Expanding the $f(\cdot)$ in a Taylor series for each $j \in \{Realtors, Individuals\}$ will give:

$$\Delta^{t} y_{it}^{*} = \varphi_{j}(t) + (X_{ijt}, \Delta^{t} X_{ijt})\beta_{j} + e_{ijt}$$
(2)

We may identify $\varphi_j(t)$ as

$$\varphi_j(t) = \Delta^t y_{it} - E[\Delta^t y_{it}^* | d_{ijt-1} = 1, X_{ijt}, \Delta^t X_{ijt}]$$
(3)

In order to drop out the α_i we use the differencing approach. **Def.** $\Delta^t(\cdot)_{it} := (\cdot)_{it} - (\cdot)_{i1}$ Expanding the $f(\cdot)$ in a Taylor series for each $j \in \{\text{Realtors, Individuals}\}$ will give:

$$\Delta^{t} y_{it}^{*} = \varphi_{j}(t) + (X_{ijt}, \Delta^{t} X_{ijt})\beta_{j} + e_{ijt}$$
(2)

We may identify $\varphi_j(t)$ as

$$\varphi_j(t) = \Delta^t y_{it} - E[\Delta^t y_{it}^* | d_{ijt-1} = 1, X_{ijt}, \Delta^t X_{ijt}]$$
(3)

In order to drop out the α_i we use the differencing approach. **Def.** $\Delta^t(\cdot)_{it} := (\cdot)_{it} - (\cdot)_{i1}$ Expanding the $f(\cdot)$ in a Taylor series for each $j \in \{\text{Realtors, Individuals}\}$ will give:

$$\Delta^{t} y_{it}^{*} = \varphi_{j}(t) + (X_{ijt}, \Delta^{t} X_{ijt})\beta_{j} + e_{ijt}$$
⁽²⁾

We may identify $\varphi_j(t)$ as

$$\varphi_j(t) = \Delta^t y_{it} - E[\Delta^t y_{it}^* | d_{ijt-1} = 1, X_{ijt}, \Delta^t X_{ijt}]$$
(3)

A = A = A

Def. $p_{ijt} := E[d_{ijt}|y_{ijt}, X_{ijt}, t, type = j]$ Assumption 1. $E[X_{ijt}|e_{ijt}, \eta_{ijt}] = X_{ijt}$ Assumption 2. $\exists v \in \{y, X\} : \frac{\partial p}{\partial v} \neq 0.$

∃ ► < ∃ ►

Def. $p_{ijt} := E[d_{ijt}|y_{ijt}, X_{ijt}, t, type = j]$ Assumption 1. $E[X_{ijt}|e_{ijt}, \eta_{ijt}] = X_{ijt}$ Assumption 2. $\exists v \in \{y, X\} : \frac{\partial p}{\partial y} \neq 0.$

Def.
$$p_{ijt} := E[d_{ijt}|y_{ijt}, X_{ijt}, t, type = j]$$

Assumption 1. $E[X_{ijt}|e_{ijt}, \eta_{ijt}] = X_{ijt}$
Assumption 2. $\exists v \in \{y, X\} : \frac{\partial p}{\partial v} \neq 0.$

æ

<口> <問> <問> < 因> < 因> < 因> < 因> < 因> < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < < 因 > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > <

Then we may identify $E[\Delta^t y^*_{it} | d_{ijt-1} = 1, X_{ijt}, \Delta^t X_{ijt}]$ as

$$E[\Delta^t y_{it}^* | d_{ijt-1} = 1, X_{ijt}, \Delta^t X_{ijt}] =$$

 $=(X_{ijt},\Delta^t X_{ijt})eta_j+E[e_{ijt}|d_{ijt-1}=1]=$

$$= (X_{ijt}, \Delta^t X_{ijt})\beta_j + \int_{-\infty}^{\infty} \int_{-g(y_{ijt-1}, X_{ijt-1}, t-1, type=j)}^{\infty} e_{ijt} f_{\eta,\epsilon}(s, r) ds dr =$$

$$= (X_{ijt}, \Delta^t X_{ijt})\beta_j + \lambda_j(p_{ijt-1})$$

If A.1-2 are met then β_j , λ_j and, consequently, $\varphi_j(t)$ are identified [Newey, 2009].

イロト イヨト イヨト

Then we may identify $E[\Delta^t y^*_{it} | d_{ijt-1} = 1, X_{ijt}, \Delta^t X_{ijt}]$ as

$$E[\Delta^t y_{it}^* | d_{ijt-1} = 1, X_{ijt}, \Delta^t X_{ijt}] =$$

$$= (X_{ijt}, \Delta^t X_{ijt})\beta_j + E[e_{ijt}|d_{ijt-1} = 1] =$$

$$= (X_{ijt}, \Delta^t X_{ijt})\beta_j + \int_{-\infty}^{\infty} \int_{-g(y_{ijt-1}, X_{ijt-1}, t-1, type=j)}^{\infty} e_{ijt} f_{\eta,\epsilon}(s, r) ds dr =$$

$$= (X_{ijt}, \Delta^t X_{ijt})\beta_j + \lambda_j(p_{ijt-1})$$

If **A.1-2** are met then β_j , λ_j and, consequently, $\varphi_j(t)$ are identified [Newey, 2009].

< □ > < □ > < □ > < □ > < □ > < □ >

Then we may identify $E[\Delta^t y^*_{it} | d_{ijt-1} = 1, X_{ijt}, \Delta^t X_{ijt}]$ as

$$E[\Delta^t y_{it}^* | d_{ijt-1} = 1, X_{ijt}, \Delta^t X_{ijt}] =$$

$$= (X_{ijt}, \Delta^t X_{ijt})\beta_j + E[e_{ijt}|d_{ijt-1} = 1] =$$

$$=(X_{ijt},\Delta^t X_{ijt})\beta_j+\int_{-\infty}^{\infty}\int_{-g(y_{ijt-1},X_{ijt-1},t-1,type=j)}^{\infty}e_{ijt}f_{\eta,\epsilon}(s,r)dsdr=$$

$$= (X_{ijt}, \Delta^t X_{ijt})\beta_j + \lambda_j(p_{ijt-1})$$

If A.1-2 are met then β_j , λ_j and, consequently, $\varphi_j(t)$ are identified [Newey, 2009].

・ロト ・聞 ト ・ ヨト ・ ヨトー

Then we may identify $E[\Delta^t y^*_{it} | d_{ijt-1} = 1, X_{ijt}, \Delta^t X_{ijt}]$ as

$$E[\Delta^t y_{it}^* | d_{ijt-1} = 1, X_{ijt}, \Delta^t X_{ijt}] =$$

$$= (X_{ijt}, \Delta^t X_{ijt})\beta_j + E[e_{ijt}|d_{ijt-1} = 1] =$$

$$=(X_{ijt},\Delta^t X_{ijt})\beta_j+\int_{-\infty}^{\infty}\int_{-g(y_{ijt-1},X_{ijt-1},t-1,type=j)}^{\infty}e_{ijt}f_{\eta,\epsilon}(s,r)dsdr=$$

$$=(X_{ijt},\Delta^t X_{ijt})\beta_j+\lambda_j(p_{ijt-1})$$

If **A.1-2** are met then β_j , λ_j and, consequently, $\varphi_j(t)$ are identified [Newey, 2009].

< □ > < □ > < □ > < □ > < □ > < □ >

Then we may identify $E[\Delta^t y^*_{it} | d_{ijt-1} = 1, X_{ijt}, \Delta^t X_{ijt}]$ as

$$E[\Delta^t y_{it}^* | d_{ijt-1} = 1, X_{ijt}, \Delta^t X_{ijt}] =$$

$$=(X_{ijt},\Delta^t X_{ijt})\beta_j+E[e_{ijt}|d_{ijt-1}=1]=$$

$$=(X_{ijt},\Delta^t X_{ijt})\beta_j+\int_{-\infty}^{\infty}\int_{-g(y_{ijt-1},X_{ijt-1},t-1,type=j)}^{\infty}e_{ijt}f_{\eta,\epsilon}(s,r)dsdr=$$

$$=(X_{ijt},\Delta^t X_{ijt})\beta_j+\lambda_j(p_{ijt-1})$$

If A.1-2 are met then β_j , λ_j and, consequently, $\varphi_j(t)$ are identified [Newey, 2009].

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Estimation of $\hat{p}_{ijt} := E[d_{ijt} = 1 | y_{ijt}, X_{ijt}, t, type = j] =$ = $\int_{-g(y_{ijt}, X_{ijt}, t, type = j)}^{\infty} \eta_{ijt} f_{\eta}(s) ds = \gamma_j(y_{ijt}, X_{ijt}, t, type = j).$
- **3** Estimation of $\Delta^t \hat{y}_{ijt} := E[\Delta^t y_{it}^* | d_{ijt-1} = 1, X_{ijt}, \Delta^t X_{ijt}] =$ = $(X_{ijt}, \Delta^t X_{ijt})\beta_j + \lambda_j (\hat{p}_{ijt-1})$ aproximating unknown λ_j by po
 - series on \hat{p}_{iit-1}
- 3 Estimation of $\hat{arphi}_{ij}(t) := \Delta^t y_{ijt} \Delta^t \hat{y}_{ijt}.$
- Smoothing $\hat{\varphi}_j(t)$ over i for each $j \in \{Realtors, Individuals\}$

イロト イポト イヨト イヨト

• Estimation of
$$\hat{\varphi}_{ij}(t) := \Delta^t y_{ijt} - \Delta^t \hat{y}_{ijt}$$
.

• Smoothing $\hat{\varphi}_j(t)$ over *i* for each $j \in \{Realtors, Individuals\}$

æ

イロト イ団ト イヨト イヨトー

3 Estimation of
$$\hat{\varphi}_{ij}(t) := \Delta^t y_{ijt} - \Delta^t \hat{y}_{ijt}$$
.

Smoothing $\hat{\varphi}_j(t)$ over *i* for each $j \in \{Realtors, Individuals\}$

æ

(日) (四) (日) (日) (日)

 $= (X_{ijt}, \Delta^t X_{ijt})\beta_j + \lambda_j(\hat{p}_{ijt-1})$ aproximating unknown λ_j by power series on \hat{p}_{ijt-1} .

3 Estimation of
$$\hat{\varphi}_{ij}(t) := \Delta^t y_{ijt} - \Delta^t \hat{y}_{ijt}$$
.

• Smoothing $\hat{\varphi}_j(t)$ over *i* for each $j \in \{Realtors, Individuals\}$

3

・ロト ・聞 ト ・ ヨト ・ ヨト …

	y_{i1} $\Delta^t y_{it}$						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
type	-648.0** (245.4)	10.49 (6.364)	11.43 (6.366)	9.838 (6.358)	7.584 (6.367)	7.657 (6.367)	11.16 (6.315)
ln(changes)	98.62 (185.4)	-511.3*** (3.711)	-511.2* ^{**} (3.712)	-511.7* ^{**} (3.707)	- 509.5* ^{**} (3.739)	-509.5* ^{**} (3.739)	-514.2* ^{**} (3.713)
ln(shows)	76.26 (49.08)	-0.590	-0.454	-0.448	-0.997	-1.001	2.360* [*]
upping	-3591.4	62.66	(0.755)	60 29	-57 24	(0.703)	(0.709)
av. mon. pr.	(5039.5) 0.175***	(104 1) -0.008***		(103 9) -0.018***	(103.8) -0.018***	-0.018***	-0.006***
∆ upping	(0.050)	(0.001)	-112.1	(0.001)	(0.001)	(0.001) -112.7	(0.002) -129.7
Δ av. mon. pr.			(94.14) 0.002** (0.001)	0.010*** (0.001)	0.010*** (0.001)	(93.86) 0.010*** (0.001)	(93.07) 0.002 (0.001)
Property char.	Yes	No	No	No	Yes	Yes	Yes
Week dummies	No	No	No	No	No	No	Yes
Ν	13113	42262	42262	42262	42262	42262	42262
n	13113	9656	9656	9656	9656	9656	9656
Num. of params	28	6	6	7	29	29	40
R ²	0.519	0.314	0.313	0.315	0.318	0.318	0.330

Standard errors in parentheses

 $^{*}\rho < 0.05$ $^{**}\rho < 0.01$ $^{***}\rho < 0.001$

э

イロト イポト イヨト イヨト

	Realtors			Individuals			
	(1)	(2)	(3)	(4)	(5)	(6)	
ln (ch ang es)	-509.2***	-506.9***	-405.5***	-552.1***	- 550 .7***	-458.0***	
In (show)	(3.821) -0.604	(3.856) -1.140	[6 131] 9 553***	(15.36) 5.555	(15.62) 4.927	[18.26] -2.141	
Δ upping	(0.765) -79.57	(0.779) -81.03	[0.931] -92.77	(4.040) - 191.9	(4.190) -204.0	[4 273] -190 2	
av. mon. pr.	(110.0) -0.018***	(109.8) -0.018***	[112.1] -0.013***	(186.1) -0.016*	(185.3) -0.015*	[182.0] -0.011	
Δ av. mon. pr.	(0.002) 0.010***	(0.002) 0.010*** (0.001)	[0.002] 0.008***	(0.007) 0.009* (0.001)	(0.007) 0.009* (0.004)	[0.007] 0.009*	
Property char.	(0.001) No	(0.001) Yes	Yes	(0.004) No	(0.004) Yes	10.004 Yes	
Control for λ <i>p</i> -value for sign. of λ	No	No	<i>Yes</i> 0.000	No	No	<i>Yes</i> 0.000	
N	39645	39645	39645	2617	2617	2617	
n	8934	8934	8934	724	724	724	
Num. of params	6	28	31	6	28	31	
R ²	0.314	0.317	0.325	0.332	0.347	0.372	

Standard errors in parentheses.

Panel bootstrap standard errors based on 1000 replications clustered on day of first listing in brackets. *p < 0.05, **p < 0.01, ***p < 0.001

Results. Heterogeneity between sellers types in $\varphi_j(t)$

э

Model robust to:

- Sellers and property unobserved characteristics;
- Nonrandom attrition of offers;
- Arbitrary dependence of price on time;
- Sellers are heterogeneous in pricing strategy;
- Realtors drops the price faster comparing with individuals.

Model robust to:

- Sellers and property unobserved characteristics;
- Nonrandom attrition of offers;
- Arbitrary dependence of price on time;
- Sellers are heterogeneous in pricing strategy;
- Realtors drops the price faster comparing with individuals.

- Model robust to:
 - Sellers and property unobserved characteristics;
 - Nonrandom attrition of offers;
 - Arbitrary dependence of price on time;
- Sellers are heterogeneous in pricing strategy;
- Realtors drops the price faster comparing with individuals.

- Model robust to:
 - Sellers and property unobserved characteristics;
 - Nonrandom attrition of offers;
 - Arbitrary dependence of price on time;
- Sellers are heterogeneous in pricing strategy;
- Realtors drops the price faster comparing with individuals.

- Model robust to:
 - Sellers and property unobserved characteristics;
 - Nonrandom attrition of offers;
 - Arbitrary dependence of price on time;
- Sellers are heterogeneous in pricing strategy;
- Realtors drops the price faster comparing with individuals.

- Model robust to:
 - Sellers and property unobserved characteristics;
 - Nonrandom attrition of offers;
 - Arbitrary dependence of price on time;
- Sellers are heterogeneous in pricing strategy;
- Realtors drops the price faster comparing with individuals.

Thank you for the attention!

For any questions e-mail to: tos600@gmail.com

∃ → (∃ →