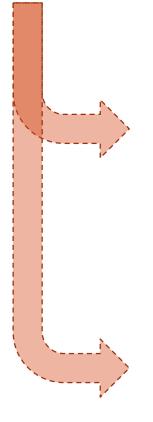
READING SEMINAR OF TEACHER-STUDENT GROUP "EMPIRICAL DEMAND ESTIMATION"

"A Two-State Model of Purchase Incidence and Brand Choice" Randolph E. Bucklin and James M. Lattin

Prepared by Marina 0. Tsevileva

26.03.2015


Higher School of Economics – Perm Branch, 2015

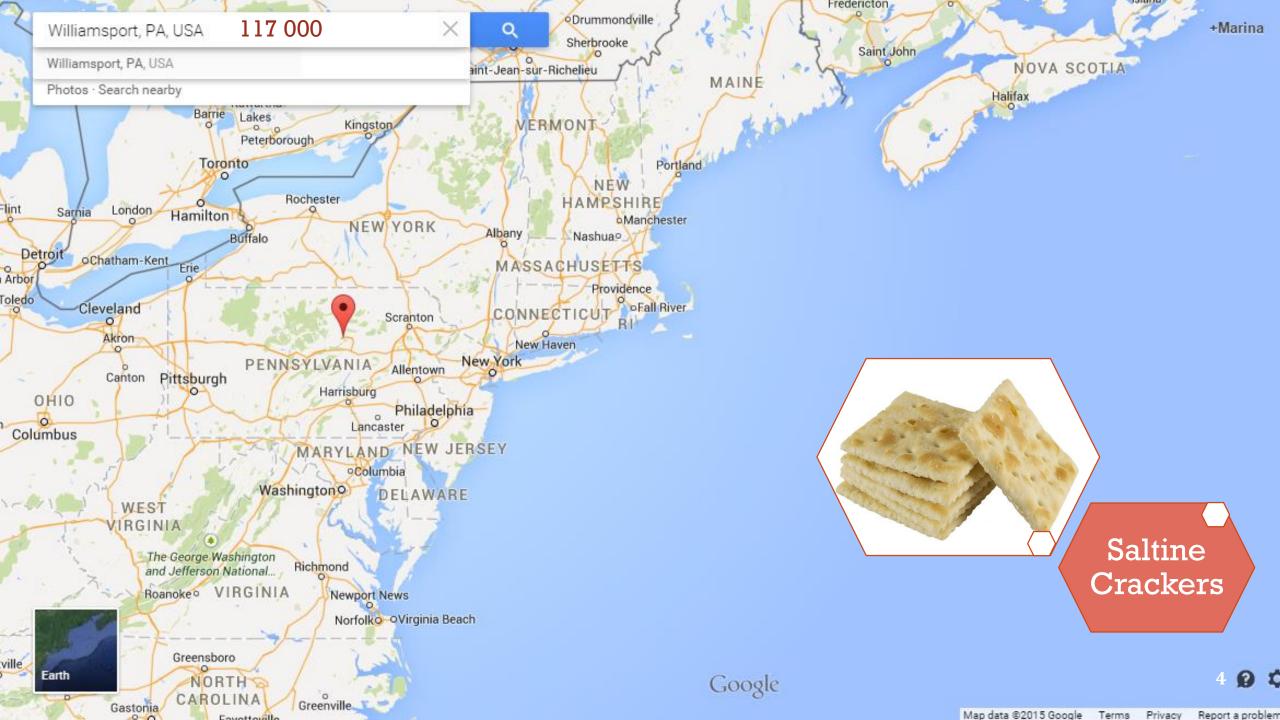
A probabilistic model of purchase incidence and brand choice

Planned decision State

He or she has

(1) considered a purchase,

(2) made a decision to buy a given brand or not to buy at all.


Show NO response to point-of-purchase promotions.

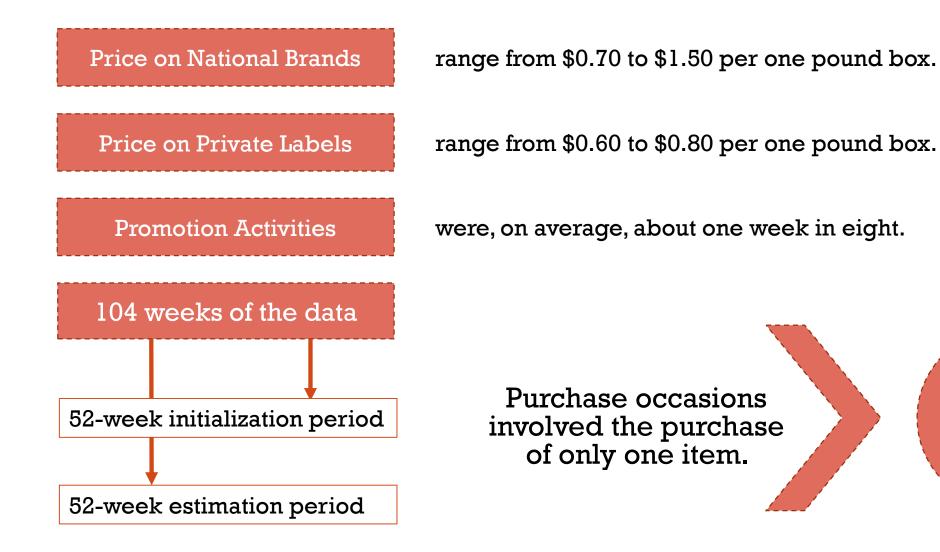
Opportunistic decision State

He or she has not considered a purchase or, having considered a purchase, has not decided whether or what to buy.

May be strongly influenced by promotions.

Data (IRI scanner data)

In this market there are 10 instrumented stores:

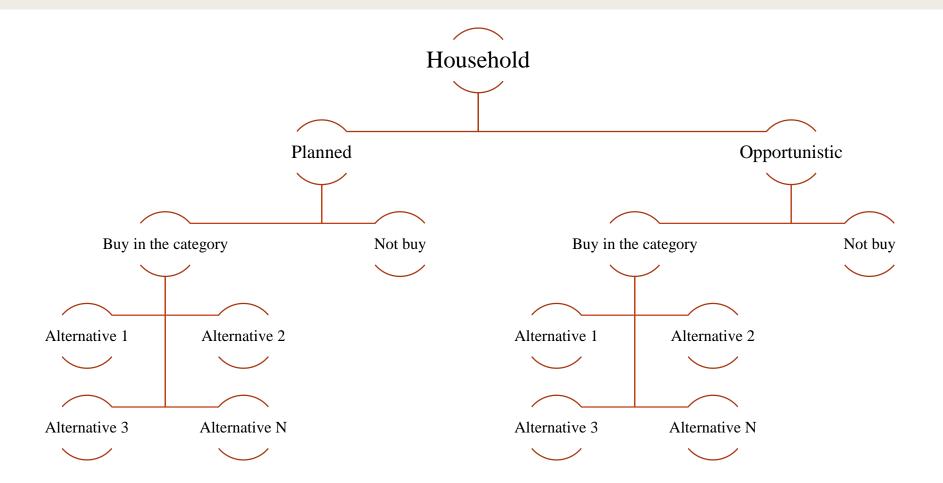

- 1. regional chain A (stores 107-110), (Brand 2)
- 2. regional chain B (store 114), (Brand 1)
- 3. national chain C (stores 115-116),
- 4. independent chain D (stores 111-113).

The six top selling saltine brands:

Brand	UPC Code	Name	Size	Share
1	06373 05077	SPL1	16 oz	6.8%
2	21662 01482	SPL2	16 oz	31.9%
3	24100 13067	Sunshine	16 oz	7.4%
4	30100 00133	Zesta	16 oz	6.9%
5	44000 00055	Premiuml	16 oz	6.4%
6	44000 00057	Premium2	16 oz	26.0%

Data

6


95%

The Two-state Model A NESTED LOGIT

Discrete Choice Model

Conceptual Framework

 $P_t^h(i) = P_t^h(plan) \cdot P_t^h(inc|plan) \cdot P_t^h(i|inc\&plan) + P_t^h(opp) \cdot P_t^h(inc|opp) \cdot P_t^h(i|inc\&opp)$

The First Level

Planned State

 $P_t^h(plan) = \frac{\exp(W)}{1 + \exp(W)}$ $W = \beta_0 + \beta_1 \cdot DL^h + \beta_2 \cdot SL_t^h + \beta_3 \cdot INV_t^h$

Opportunistic State

 $P^h_t(opp) = 1 - P^h_t(plan)$

 $INV_{t}^{h} = INV_{t-1}^{h} + Q_{t-1}^{h} - CR^{h} \cdot I_{t-1;t}$

CR^{*h*} - average weekly consumption of saltines in pounds by household *h* (*initialization period*).

Store Loyalty = proportion of household h's total expenditures made in the store being visited on occasion t, Deal Loyalty = proportion of household h's purchases made in the initialization period when the brand purchased was being promoted.

The Second Level

Planned State

$$P_t^h(inc|plan) = \frac{\exp(V_{plan})}{1 + \exp(V_{plan})}$$
$$V_{plan} = \alpha_0 + \alpha_1 \cdot CR^h + \alpha_2 \cdot INV_t^h + \alpha_3 \cdot CV_{plan}$$

$$P_t^h(inc|opp) = \frac{\exp(V_{opp})}{1 + \exp(V_{opp})}$$
$$V_{opp} = \alpha_4 + \alpha_1 \cdot CR^h + \alpha_2 \cdot INV_t^h + \alpha_5 \cdot CV_{plan}$$

Category Value – inclusive value; category attractiveness.

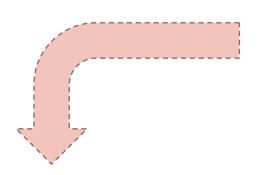
The Third Level

Planned State

 $P_t^h(i|inc\&plan) = \frac{\exp(U_{i|plan})}{\sum_k \exp(U_{k|plan})}$ $U_{i|plan} = \alpha_i + \theta_1 \cdot LOY_i^h + \theta_2 \cdot LPP_{it}^h$

Opportunistic State

$$P_{it}^{h}(i|inc\&opp) = \frac{\exp(U_{i|opp})}{\sum_{k} exp(U_{k|opp})}$$
$$U_{i|opp} = \gamma_{i} + \theta_{1} \cdot LOY_{i}^{h} + \theta_{3} \cdot Price_{it} + \theta_{4} \cdot Promo_{it} + \theta_{5} \cdot (Price_{it} \cdot Promo_{it})$$


*Promo*_{*it*} = 1 if brand *i* is featured or displayed on occasion *t* and 0 otherwise,

 $LOY_i^h = \frac{(1/k + \# \text{ of purchases of } i \text{ by } h)}{(1 + \# \text{ of purchases of all brands by } h)}$

it is a Bayesian estimate based on equally likely priors with an equivalent sample size of one.

Calibration

Calibration sample

52 households make 943 purchases of saltines in 15,023 store visits.

$$LL = \sum_{h} \sum_{i} \left[\sum_{i} y_{ii}^{h} \ln \left(P_{i}^{h}(i) \right) + \left(1 - \sum_{i} y_{ii}^{h} \right) \ln \left(1 - \sum_{i} P_{i}^{h}(i) \right) \right] \longrightarrow MAX$$

Estimated Simultaneously

456 households buy saltines

Validation sample

100 households make612 saltine purchases in9,999 store visits.

RESULTS

	Brand Choice				
	$P_{i}^{h}(i \text{inc}\&\text{plan})$	$P_i^h(i \text{inc&opp})$			
Store Private Label 1	$\alpha_1 = -2.124 (-2.67)^a$	$\gamma_1 = 1.412$ (3.08)			
Store Private Label 2	$\alpha_2 = -2.198$ (-3.29)	$\gamma_2 $ 1.427 (4.24)			
Sunshine	$\alpha_3 = -0.549$ (-1.28)	$\gamma_3 -0.621$ (-2.04)			
Zesta	$\alpha_4 = -0.260$ (-0.55)	$\gamma_4 = 0.455$ (1.85)			
Premium I	$\alpha_{5} = -1.021$ (-1.91)	$\gamma_{5} = -0.394$ (-1.35)			
LOY [*] (Loyalty)	$\beta_1 = 3.268$ (10.71)	$\beta_1 = 3.268^{b}$ (10.71)			
LP ^h _u (Last Purchase)	β_2 1.896 (11.04)				
PRICE		$\beta_3 = -17.020$ (-3.99)			
PROMOu		$\beta_4 = -6.859$ (-2.68)			
$PRICE_{u} \times PROMO_{u}$		β_{5} (11.204 (3.00)			

		Purchase	Incidence			Decis	ion Stat	е
$P_{i}^{h}(inc plan)$		P ^h (inc opp)		$P_t^h(\text{plan})$				
Intercept	θο	-3.968	Intercept	θ_4	4.893	Intercept	δι	-0.750
		(-13.30)			(2.77)			(-2.12)
CR*	θ_1	2.837	CR*	θ_1	2.837°	DL*	δ_2	-1.813
		(9.14)			(9.14)			(-3.63)
INV,	θ_2	-0.516	INV ^h	θ_2	- 0.516°	SL [*]	δ3	2.463
		(-11.01)			(-11.01)			(7.00)
CV_{plan}	θ_3	0.260	CV _{opp}	θ,	0.689	INV ^k	δ_4	0.361
-		(4.22)			(6.29)			(2.63)

Model Validation

The one-state nested logit model

$$P_t^h(i) = P_t^h(\mathrm{inc})P_t^h(i|\mathrm{inc}),$$

 $P_i^h(i|\mathrm{inc}) = \frac{\exp(U_i)}{\sum_k \exp(U_k)},$

$$U_i = \alpha_i + \beta_1 \text{LOY}_i^h + \beta_2 \text{LP}_{ii}^h + \beta_3 \text{PRICE}_{ii}$$

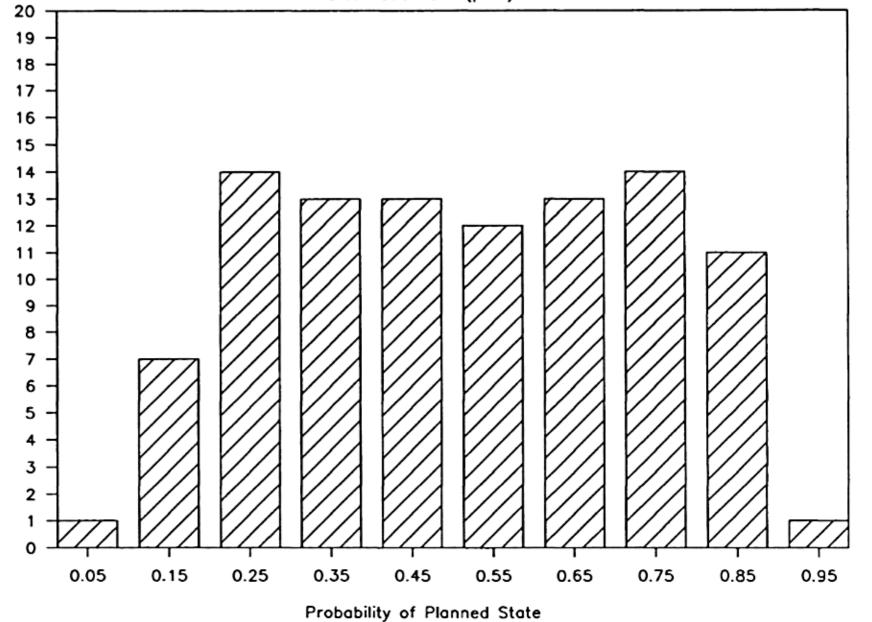
+ β_4 PROMO_{*it*} + β_5 (PRICE_{*it*} × PROMO_{*it*}),

$$P_{t}^{h}(\text{inc}) = \frac{\exp(V)}{1 + \exp(V)},$$

$$V = \theta_{4} + \theta_{1} CR^{h} + \theta_{2} INV_{t}^{h} + \theta_{5} CV, \quad \text{and}$$

$$CV = \ln\left(\sum_{k} \exp(U_{k})\right).$$

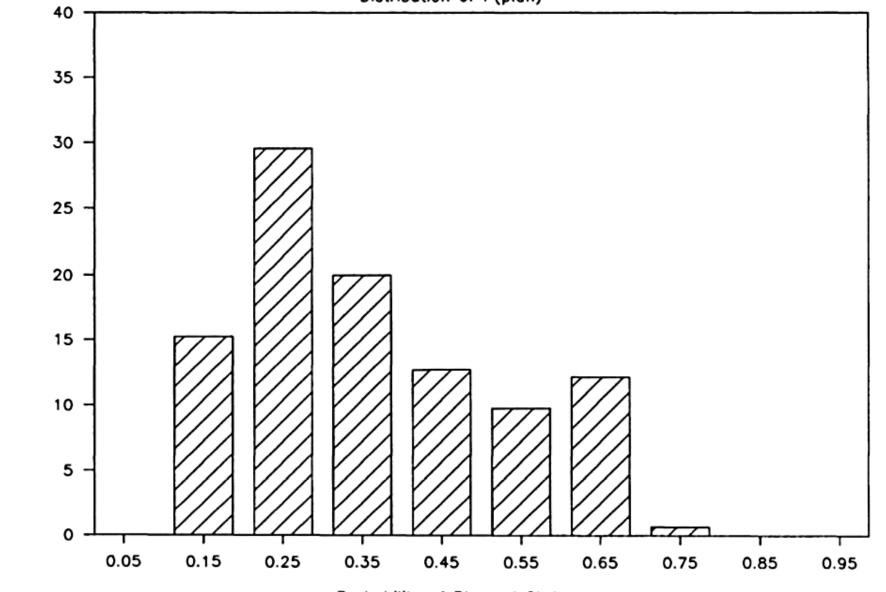
Was calibrated following the maximum likelihood procedure described by Guadagni and Little (1987)


Consumers are always opportunistic

Parameter Estimat	es for l	he One-State	Nested Logit Refe	erence Moa	lel		
$P_i^h(i \mathrm{inc})$		Hold-out s	ample	$P_t^h(inc)$			
Store Private Label 1	α_1	1.073 (2.63) ^a	Intercept	θ_4	-4.350 (-41.66)		
Store Private Label 2	α2	0.837 (2.14)	CR ^h	θ_1	(41.00) 2.629 (9.24)		
Sunshine	α3	-0.209 (-1.06)	INV ^{<i>h</i>}	θ_2	-0.446 (-11.51)		
Zesta	α4	0.450 (2.54)	CV	$ heta_3$	0.398 (14.06)		
Premium 1	α5	-0.259 (-1.18)					ion sample
LOY ^h Loyalty)	β_1	3.058 (14.23)	Log Likelihood	4		Two-State 	One-State
LP ^h _{it} (Last Purchase)	β_2	1.476 (12.05)	Akaike Inform U^2		erion	-3721.4 0.207	-3817.4 0.184
PRICE _{it}	β_3	-1.001 (-1.68)					t sample
	β4	1.603 (2.51)			Two	-State	One-State
$PRICE_{it} \times PROMO_{it}$	β5	0.022 (0.04)	Log Likelih	ood	-23	97.4	-2441.2

Saltine Crackers

Distribution of P(plan)



Percent of Store Visits

Ground Caffeinated Coffee

Percent of Store Visits

